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Proor. = It suffices to prove that F is an admissible homotopy. Since
Fiz, )=z for (z, )€ 3G X J, S=|(z, )€ G:F(z,l)=12)=|(z, t) € c)(@): Fz, ) =z
is closed and bounded.

The fact that y(F((4 N @) x J)) == v(4) for any bounded subset 4 of X is
immediate from our assumptions. We claim that Il — F is a closed map, and
to prave this it suffices to show Il — #" is a proper map. Thus let M be any
compact subset of X and let N=l— F)"'{M)=|((z, Deocl(G) X J:z—F
(¢, e M), Let N, = II(N). Since N is closed and NC N, X J, it suffices to
show ¢(N,)=0. However, if ze N, z = F(z, t) +m for some {&. and some
me M. Thus Ny CF(N: X J)+ M. IF y(N,)> 0, this would imply v(N\) << y(F
(N X J)+ M) = y(FIN: X J)) < y(N), a contraction. Thus y(N)=0and I —F
is proper, S is compact and hence F(S) is compact. Thus if (C,:ke K] is a
locally finite covering of X by closed, convex sets, there exists an open nei-
ghborhood W of F(S) such that cl(W) N C. is empty, except for finitely
many k. Setting U = F~'(W) it is clear that <P, U, (Ci: ke K}> is a homo-
topy admissible triple. Q.E.D.

CoroLrary 2. - Let G be a bounded, open subset of XYe&F and let
J=[0, 1]. Let F:el(@) X J— X be a continuons function such that F(z, t) <+ =
for £ €2G X J. Assume that F, = F(., () is a condensing map for te[0, 1] and
suppose that # is uniformly continuouns in #. Then for any subset 4 of cl(G)
with y(4)> 0, v(F(4 X J)) < y(4), so that by Corollary 1, ix(F,, G) = ix(F1, G).

Proor. = Assume 4 Cecl(@) and y(4) > 0. Our first claim is that g(f) =
= y(F/(4)) is a continuous function. To see this, select fpe.J and take = > 0.
By the uniform continuity of F,, select &> 0 such that |t —#| <2 implies
|Ffz) — F(z)| <e/2 for all ze 4. Therefore, for ¢ — & < & F(A)C N.p(F(4))
and F(d)C N;o(F(4)). The first inclusion implies g(f)<< g(fe) +e and the
second that g(ty) —e<<g(t). Thus k(s)= g(s)/y(4) is continuous; and since
his) <1 for €0, 1), h(s)==k =1 for s&€[0, 1]. It now follows just as in the
proof of Proposition 1, Section H, that (F(4 X J)) << ky(4) < y(4).

Q.E.D.

We shall have no need for further generalizations of commutativity and
normalization properties of Section K, and we shall consequently limit our-
selves to the results already stated. We should mention that at least the
commutativity property of E easily generalizes to the context of this section.

Remark. - After this paper was written A. Vieson: kindly brought to
our attention a number of papers in this area which he has written in col-
laboration with M. Frrr. In particular it seems that the notion of condensing
maps was first introduced by Furi and Viesowr in [38] under the name
«densilying maps», Sapovskir cannot be given credit since (as we have already
noted) he used a different measure of noncompactness from the one used here.
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sequence of admissible approximations h, with rr.!apect to < U"[G,-:jeJ}>
such that sup [|g(z) — ha(z)|: z € cl(U)} —0 and txgh,., U)= t,x:(h, U) -l- 0. Thus
h. has a fixed point z,€ cl(U) and @, — g(x.) = 0. Since I —g cl(U) is a closed
map, g has a fixed point in cl(l). Q.ED.

Before procceding further we need to define the concept of an admissi-
ble homotopy for the ficed point index. Let J=[0, 1], the unit interval, and
let 3 be an open subset of X X J, X€¥ We shall say that a continuous
map F:Q—» X is an admissible homotopy if (1) S=i(z, HeQ:F(z, t)=12z|
ia closed and bounded, (2) There exists a bounded open neighborhood U of S
with ¢l(U) C 0 and a locally finite covering {CUi:ke K| of X by closed, con-
vex sets C, C X such that the following properties hold: (a) For any bounded
subset 4 of X, y(F((4 X J) N elU)) <v(4). (b) 1 — F|cl(T) is a closed map,
where II is the projection I(z, f)==z. (¢) F(cl(U)) N C; is empty except for
finitely many k. If , U, and | Ci:k € K | are as above we say <F, U, [Ci:ke K[>
is a homolopy admissible friple.

Turorey 3. (Homotopy property). = Let Q be an open subset of X X J,
Xe# J=[0, 1], and let F:Q — X be admissible. Then if we write
Q= |z:(z, H€Q] and F,=F(., t), F.: Q, - X is an admissible map and
i\{Fn, ﬂn)=il’(Fl: ﬂ:)-

Proor. - It <F.U,[Ci:k€K|> is a homotopy admissible triple, it is
clear that <F,, U,, {Ci: k€ K|> i8 an admissible triple (U, = [x:/z, H&U}),
80 Fii . — Y is an admissible map, Let 8 =inf|{ (Il - F)(z, §)[: (z, t) € ol(U)~ U
and notice that by our hypotheses, & > 0. By assumption F(clU) N C; is empty
for k¢ L, L some finite subset of K. Let 0= U;g,0; and let R:C— D be
a retraction of C onto a compact subset D of € such that Rz)e C, it ze ;.
(£ exists by Corollary 1, Section B). It is casy to show that there exists M
such that |[F(z, )| << M for (z, t)ecl(U) and |y|< M for yeD. Select s such

that 1 — % <8 <1 and deline H(z, )=s8F(z, 1))+ (1 —s)R(x). It is easy to see that

\H(z, t) — F(z, )| < & for (z, t)ecl(V), so H(z, t) 4 z for zecl(U)~ U, Our con-
struction also implies that if F(z, f)e O,, then H(z, #) e C;. Finally, for any
subset 4 of X, y(H(A X J) N clU) < sy(F(4 X J) N oll) < 8y(d), since R is
compact. We now apply Corollary 1, Section E, and setting H, = H(., 1), we
find ix(Ho, Us)=ix(H,, U,). However, it is clear that H, is an admissible ap-
proximation with respect to <F,, U, |(C;.k€K >, so ixH,, U)= WMF., Q)
Thﬂ& we have I'._\'(Fn, ﬂn]:‘i,\‘{F[, fh). Q.ED

CoroLrary 1. - Let @ be a bounded open subset of Xe& and let
J=[0, 1]. Let F:cl(@) X J— K be a continuous map such that F(z, {) 4
for xe 2@, ted. Assume that lor any subset 4 of cl(@) such that y(4) =0,
V(P4 X J)) < ¥(4). Then ix(Fo, @) = ivF., @)
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<g V,|D:lel. > sach that [h'(z) —g(z) < for zecl(V). Consider the ho-
motopy h.=sh + (1 —8k', 0 =<s <1, Since |h{x)—glr)| and |k(z)— giz)|
are strictly leas than |z — g(z)| for 2 €9V, h(z) == z tor €3V, Since h(z) and
R'(z) both lie in C;3glz), hf(z)e X. Thus the homotopy is permissible and
ixh, V)=ix(h', V). However, k(z)Fz for z€V,, s0 ix(h', U N V)=1ik', V)
Similarly, i(f, U)=icf, UN V), where [' is an admissible approximation
with respect to <g, UNV, [0;:jed|>. Thus from the start we may as
well assume that f and A are admissible approximations with respect to
<g, UNV, |C:jed]> and <9, UNYV, [Di:leL;> respectively and try
to prove iyf, U N V)=ixth, U N V).

Consider the admissible triple <g, UNV, |G, N Dy:(j,l)ed X L|> and
and let 6 be an admissible approximation with respect to this triple. We
claim that ix(f, U N V)=ixh, U N V)=ixh, T N V). It suffices to prove the
tirst equality, the proof of the other being the same. Consider the homotopy
0,(z) = (1 — 8)f(z) } 8f(z), 0 <8< 1. Just as above, b,(z)F2z lor z€3U N V),
0<s<1. Farther, 8(z)eX forzecl(UN V)and 0<s< 1. For it gz)e C,N D,
Bz)e C; N D,C C; and f(z)e C;, so O,(z)e ;. Thus the homotopy is permissible
and if(f, TN V)=ix6, UN V) Q.E.D.

Deriyimioy. = Let & be an open subset of a space X e & and let g: /= X
be a continuous fanction which is admissible. Lel <g, U, [C;:jeJ|> be an
admissible triple and let f be an admissible approximation with respect to
this triple. We define ixg, &) =iy(f, U). Theorem 1 shows this definition is
well-defined.

Tueorex 1 (Additivity property). - Let @ be an open subset of a space
Xe& and ¢g: G > X be an admissible map. Let S=|ze@|glz)=1z| and as-
sume SC (4 U G., G, and @ disjoint open subsets of ¢. Then g is admissible
as a map from G; to X (i=1, 2) and ix(g, @)=1ixg, @)+ ixlg, G-). Further,
it ix(g, @) =0, then g has a fixed point in G.

Proor. - Since g is an admissible map, let <g, U, 1 C:jeJ]| > be an
admissible triple. Let S=|zeG:g(x)==z) and let S;=8SNG, 1<i<?2.
S, is bounded since § is bounded and S, is closed since S, =SNG and
S; =S8N @&, G, =complement of G. Let U. be an open neighborhood of S
such that el(U)C & N U. Tt is clear that <g|@;, T;, [C;:jed]|>, i=1, 2,
are admissible triples, Let 8 =inf ||z — g(z)|: z€cl(U) ~ (Ui U Us)| and let h
be an admissible approximation with respect to <g, U, {C,:je€.J! > such that
|hz)— glz)| <3 for reclU). Then we have ixg, G)=ixth, U)=1ixh, U\)+
- i.\’[hs Uz) — ix(g. Gl) + ix( ' Gﬂ)-

If iv(g, G)==0, there must exist an admissible triple <g, U, (C;:ijeJ| >

such that U is nonempty and an admissible approximation h with respect to
this admissible triple, such that iy(h, U)= 0. By Theorem 1, there exists a
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locally finite covering of X, (C;:jed}, by closed, convex sots C,C X. Since
-S'=y.(S) is compact and the covering is locally finite, there exists an open
neighborhood 0 of g(S) such that ¢l(0) N C; is empty for finitely many j.
Setting W= g—'(0), glcl(W)) N €, is empty except for finitely many j. If we
let U=V N W, it is easy to see that <g, U, {C;:jeJ|> is an admissible
triple and g is an admissible map. )

The last statement of the theorem is clear since by Lemma 1, [z € cl(@):
glx)=z| is compact and [ze€cl(@):glz)=2z|=S§. Q.E.D.

Now let g be an admissible map as in the first paragraph and let
<g U |C:jeJ}> be an admissible triple. Since (I —g)z) =0 for zedl
and since (I g el(U) is closed map, int ([(I] —gi(z)|:2€3U|=25>0. It
f:el(ll)— X is a continuous map, we shall say that f is an admissible ap-
proximation with respect to < g, U, |C;:jed| > if (1) [ is a k-set-contraction,
k<l

(2) [flz) —g@)| <5 lor zecl(U), 5=1int|[(I —gXz)|:z€3U].
(3) For all jeJ and zecl(U), it glz)e C;, then f(z)e C;.

Turorey 1. - Let & be an open suhset of X eF, g: G - X an admissibloe
map. Let <g U, [0;:jeJ|> be an admissible triple. Then given 73> 0,
there exists an admissible approximation [ with respectto <g, U, (C;:jeJ]| >
such that |giz) — fiz)| < for z€cl(U). Furthermore if <g, V, (D;:leL}|> is
another admissible triple and A is an admissible approximation with respect
to <g, V,|D:leL|>, then iyx(h, V)=1idy(f, U). (Notice that the assumption
that 7 and f are admissible approximations guarantes that ik, V) and i/, U)
are defined).

Proor. - First we show that admissible approximations exist. By assum-
ption g(el(U)) M €; is emply unless je F, F some finite anbset of J. Consider
C=U,grC;. By Corollary 1, I — B, there exists a retraction R:(C > K,
where K is some compact subset of C, such that R(y)eC, if yeC, for all
yeO, jeF. Since g|cl(U) is a l1-set-contraction and cl(l/) is bounded,
lglz) =< M for zecl(l); and since K is compact, we can also assume |y| < M
for ye K. Lot 3 =inf{|z —g(z)|:2€3U| and for 0 < <& and 1 —4/2M <
<t<|l, define flz)=tg(z) 4 (1 — {)R{g(z)). From our construction it is clear
that [f(z)—g(z)| <% for zecl(U). Since g is a l-set-contraction and R is
compact, [ is a ¢-set-contraction, ¢ < 1. Finally, since R(y)eC, if ye G for
JEF and since (' is convex, f(z)€ C; il glz)e (.

We next have tvo show that ix(h, V)= ix(f, U). Since I —g cl(V) is a clo-
sed map and (I —g)z)==0 for ecl(V)—UNV="V,, int (|(I—g)a)|:z€ V,}=
=17>0. (Notice that NV may be empty if S is empty). Using the first
part of this theorem, let A" be an admissible approximation with respect to
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F. - The fixed polnt index for 1-set-contractions.

In this section we shall deline a fixed point index for maps which are
essentially l-set-contractions and which satisfy certain additional conditions.
Our main interest will be in a corollary of this work, the fixed point index
for condensing maps, but we would save no effort by initially restricting
ourselves to that case. Specifically, we consider the following situation:
Suppose X € &,  is an open snbset of X, and g: G - X is a continuous maj.
We shall say that g is an admissible map for the ficed point index or simply
an admissible map iff

(1) S=|x€@G:glz)==2] is closed and bounded.

(2) There exists a bounded, open neighborhood U of § with cl(U)C G
and a locally finite covering {C :jed| of X by closed, convex sets C;C X
such that (a) g el(U) is a 1-set-contraction, () I—g cl(U) is a closed map
(I = the identity on the Bawacm space B containing X), and (¢} glelT) N C,
is empty except for finitely many jeJ. If S is empiy, I/ may be empty. If
g U and {C,:jed| are as above, we shall say that <g, U, ((:jed| >
is an admissible (riple.

Before proceding further let us consider some classes of admissible maps.
1f @ is a bounded, open subset of a Baxach space X and g:cl(@)— X is a
1-set-contraction such that glx) 4=z lor z€3G and I — g|cl(G) is a closed

map, then g is an admissible map. To give another example we need the
following lemma.

Lwyma 1. - Let 4 be a closed, bounded subset of a Bawacm space B.
Tet g: 4 B be a condensing map. Then (I — g) is a proper map.

Proor. = Let M be a compact subset of B. We must show that N= ze€ 4 :
(1 —g)z)e M| is compact. Clearly N is closed, so it suffices to show y(N)=0.
It reN, z=g(r) +m for some me M, and thus NCg(N)+ M. If y(N)> 0,
Y(IN) < v(g(N)) 4+ 1(M)=v(g(N)) < y(N), a contradiction. Q.B.D.

Proposiriony 1. - Let X€& and let @ be an open subset of & Let
g:G—> X be a local condensing map such that S=|[ze@:glx)=a| is com-
pact. Then g is an admissible map. In particnlar, il G is bhounded, and
g:clid) > X is a condensing map such that g(z) 5=z for z€?2G, then § is
compact, so that g is admissible in that case.

Proor. = Since § [s compact and g is a local condensing map, there
exists an open ncighborhood ¥ of § such that el(V)C & and glcl(V) is a
condensing map. Clearly glel(V) is a l-sei-contraction, and by Lemma I,
I —g|ecl(V) is a proper map and hence closed. Since X €&, there exists a
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Proor. - Let us set K% = MN,-.K+. We then have cl(@) N K% =N,.,
cl(@) M KX, and since y(cl(@ N Kx¥)—>0, Proposition 2 of I— A shows that
given any open neighborhood V of cl(G) N KX, cllG)N KX CV for m>m,.
Since f(cl(@) N K%) is a compact subset of G, we can find 8 > 0 snch that
Nejif(ell@®) N K.) C 6. Setting V= [~ (Ns(f(cl() N KX)), which is an open
neighborhood of el(@) N KX, for m =m, we have el(@)N KX CV, so Nifcl
(@ N K C Nulfell@) N KEx) C Naslf(el(G) N KX) C G Q.E.D.

We can now prove Theorem 4. Select & and m; as in Lemma 7. Suppose
that X = U,g,0; is a locally finite union of closed, comvex sets in B. Since
K% is a compact subset of X, let W be an open neighborhood of K% such
that W C, =0 unless i€ F, where F is some finite subset of .J. Select m.
such that for m =m,, Ki C W, as we can do, since y(K¥)—0. It follows
that for m>=m., K} = Uiep(c‘u_f((r‘ NKL)N G, a finite union of closed,
convex sets. It is clear that Corollary 2, Section B, applies here, 8o for 5 as
above and m =ms, we can find a deformation retraction H,:K2» x I — K2,
Hufz, )=z lorze K, tell, U. -, 1) a retraction onto K, and |H.(z, ) — 2] < 5
for ze K%, tel. For m = max jm,, m:! and zeecl(G@ N K2), consider the ho-
motopy F.u(z, §) = Hu(f(z), {), 0<<t< . Tt is clear that Fo(z, t)e KX, and since
VHA{f(x), ) —f(2)| <% and Ni(f(cl(G N K2) C &, Haf(z), t)e@. It lollows that
Fui(GNEY) X T—GNKY so the maps f,:G N K2 — G N Ky defined by
f{z) = F.(z, f) induce the same map in homology; and if we write Po=H (s, L)
which is a retraction of K* onto K%, (r.N):@NEK*—>6NK and [:GNEKXI—
— G N Ka induce the same maps in homology. Tt follows that Apnll| GNEK )=
= Agou(Faf | G N KZ), 8o it sulfices to show that Agen(raf| G N KZ) is delined
and equal to i(f, X). However, (r.f) G N KX)C @ N K%, so by Lemma 4 we
obtain Agun(ruf|G N K¥) = Agen(ral| @ N E3) = Agonlf| G N E2).

We are almost done. By the additivity property, idf, X)=id/, @)=
=ig(f, G N Kx). Since el(f(@ N KZ%)) is a compact subset of G N K%, wo can
find an open neighborhood U in G N K% of cl(f(@ N K2)) such that el(l7) is
a compact subset of G N K, Cover cl(U) by a [finite number of compact,
convex sets D, C G N K, l<i<<n, and let 4 = U”_D;. Then 4 is a com-
pact ANR, {(4)C 4, and in fact (GN KX CA. By Lemma 3, we have
Agenl |G N K%)= Agou(f| 4), which we know is defined. On the other hand,
since all fixed points of f in & N K* lie in U, i (t, G N KY)=ix (f, U).
Furthermore, by the normalization property, Ago(f|d)= A(f|A) =it A)=
=1df, O) =ixs(t) U), since f(U)CA and UNA=1U This shows that
Agenll A)=ix(f, X). Q.E.D.
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since ST(F)= ST(S(E)) = S(TS(E)= S(E)=PF. If we W, by definition of F

there exiate an m such that (TS)(Tw) e E, so (STt (w)=S(1'S(Tw)e S(E)=TF.

Thus #rge(S7) is defined and (rge(ST)= ir(ST|F). However, we have
g T

EsFe E, 8o the usual commutativity property implies trpoo(TS)=t(1S|E) =
= (ST F) = trgen(ST). Q.E.D.

Lemma 4. - Let X be a topologicel space and f: X — X be a continuous
map, Let Y be an subspace of X such that { maps Y into itself and
YO f(X). Then Age(f) is delined if and only Ageu(f|Y) is delined, and Agon
(f)= Ageu/f| Y'). f|Y is meant to indicate a map from Y to 1.

Proow. - Consider the diagram

f

X—_)X.
" Nl

where i denotes inclusion and g denotes f viewed as a map from X to Y.
We have [, =is;ge;: H(X)—> H(X). However g.,: H(X)— H(Y) and
ir ;i H(Y)—> H(X), so Lemma 3 implies that (ree(fe.;) = (rgen(ge jis.)). Since
ge v i = (| Yoy trgenlls.;) = trgen((f|Y )o.)), and it follows that Agea(f) = Agen(/|Y).
Q.B.D.

Lesmya b, - Let X be a topological space and f: X — X a continuous map,
Let G be a subspace of X and suppose f: (G — G and M(X)C G for some n=>1.
Then Ageu(f) is defined if and only il Age,(f| @) is defined and Ageu(f) = Agenlt | G).

Proor. - Let @,=[X)|J @, 1 <i<n, and since f(G)C G:, write f|G,
which we will view as a map from @ to G.. Applying Lemma 3 repeatedly,
wa find that Agealf) = Agen(f| G1) = ... = A eull Ga) = Agenlf| G). Q.E.D.

Up until now our lemmas have been very general. Our next lemma ma-
kes use of the hypotheses of Theorem 4. We shall not prove Lemma 6 here,
since it appears more naturally in a sequence of results in [32].

Leuma 6, - Under the hypotheses of Theorem 4, there exists a bounded
open neighborhood G of f*(X) such that cl(f{G))C @.

Now let G be as in Lemma 6 and let Kf =cof(6 N K: )N X and
K* =cof(@ N X. If we write Gu=G N K? and Go= G, we see that f: G Gnj1
and G 2D Gatr, 80 that by Lemma 3 we have Ay, f| @) is defined iff Agan(f G.)
is defined (f|@. is viewed as a map from G, to G.) and Ay (f| @) = Agenlf| @n).
Thus in order to prove Theorem 4, it suffices to show that A ..(f|G M Ky)
is defined and equal to iy(f, X) for m large enough.

Lemma 7. - We can find & > 0 and m, such that for m = m,, N5(f(el'G N
NEK:)NCG.
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Consider V/N, where N is as in definition B. It is easy to see that
8(N) =0, so we obtain 8:V/N—> F. To see that B is an isomorphism, it sul-
fices to show that 6='(0) = N. Take :ce Vv — N and select m so that S™(z)e F.
Since £ ¢ N, S7(z) == 0; and since S F is an isomorphism, if we take zeF
such that S7(g) = S™(x) +=0, z =0, Le., b(z) 5= 0. Thus we see that 0: v/ /N— S"(K)
I8 an isomorphism.

Finally, notice that we have commutativity in the [ollowing diagram:
]
V/N ———> F

s 8
[}
VIR s I

It follows that #1(S)= tr(6—Y(S|F@H)=tr(S|F)=

Browper's generalized
trace,

Conversely, let us show that B = A. Suppose that V/N is finite dimen

sional and let [v), .., [v.] be a basis; [v] denotes the equivalence class of
veV in V/N, By definition, Sv. — X7 ayv,€ N for some a;, 1<<j<n, so

8™ Sy, — I @) = 0 and 8™y, = Tt a, 8", Select m = max {mi, ..., m,}
and consider the subapaee E spanned by Svi, l<<i<n, 0=j<m. Since
Smty, =X a8y, S maps E into itself. Given ve V, by deflmtlmu.:—x_1
bv.e N for some b, |1<i=<mn; and we find 6*9_2' Sty e B for some
k=0. It follows that E meets the conditions of &e!miuon A. Now just use
the proof that 4 = B to show tr(S) = tr(S | E), where §: V/N— V/N.

Q.E.D.

If X is a topological space, f: X — X a continuous map, H. (X) (coeffi-
cients in the rationals) is a vector space and f.; a linear map. We define
Agenlf) = Tizol— 1)trgealfs,), where we assume Irg.(f,:) is defined for all i
and zero except for finitely many #¢. The above lemma shows we can use
cither Lerav's or Browpgr's definition of the generalized trace. We shall

use Browper's definition. Our next lemma is due to Leray, we prove if for
completeness.

5 T
Lemma 3. - Suppose we have V—» W— V, where V and W are vector

spaces, 8 and 7' are linear maps, If fr .,(7'S) is defined, {ryen(ST) is defined
and (rgea(7'S) = lrga(ST).

Proor. - Assume (rg.(TS) is detined and select a finite dimensional
subspace E of V which meets the conditions of definition 4 for the linear
map TS, Let F'= S(E) W. Clearly, P is finite dimensional, and ST:F—s F
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In the general case, recall that K, = cog(), K: = cog,(G: [) K:) and
generally, K:o = co(G: ) K2o—2) and Ko, = coga(G2 ] Ky,—i). Thus we have
(K1) < kiy(Gh), Y(Ks) << lakry(Gh) and, generally, v(K.._) << ki(kik,)—"v(G)) and
¢(Kua) = (krk2)y(Gh). Since kiks < 1, y(K2a-1) and y(Kz) opproach zero. 80 Ko
and K .yen are compact, Q.E.D.

The reader may have noticed that while we have generalized the addi-
tivity, commutativity, and homotopy properties for the ordinary fixed point
index to the context of k-set-contractions, we have avoided any attempts at
generalizing the normalization property. We shall now remedy this omission.
Our goal is to establish the following theorem,

Tarorex 4. - (Normalization property). Let ¥e & be a metric ANR and
suppose that X < B, B a Bawacm space, and X inherits its metric from the
norm on B. Suppose that f: X — X is a k-set-contraction, k < 1, and assume
that /" X) is bounded for some n=1. Then Agu(f), LErav's genemlized
Lerscrerz number, is defined (using either singular or Cren homology) and
Agonlf) = ix(f, X).

It is likely that Theorem 4 can be generalized, but the theorem as stated
will suflice for our purposes,

In order to prove Theorem 4, we shall need a number of lemmas. Let
us begin with some simple linear algebra and show that two definitions of

n generalized trace, one dune to Browpmr (8] and one to Leray [23]. are
equivalent.

(A) Browper's definition: Let V be a vector space and S: V—V a
linear map. Suppose there exists a finite dimensional subspace E such that
S: E— E and such that for every veV, S"v)eE for some m depending
on v. Deline frg.(S) = (S| E).

(B) Lerav's definition: Let V be a vector space and S:V— V a li-
near map. Let N = ()52, S7(0) and suppose V/N is finite dimensional. Since
S:N— N we have S: V/N — V/N. Define trye.(S) = tr(3).

Leuma 2. - Delinitions 4 and B are equivalent.

Proor. - 4 = B. Suppose we have a finite dimensional subspace E as in
definition A. Since E is finite dimensional, we can find n such that S: 8"
() = 8~*YK) is an isomosphism. Let us write F = S*E). Givenve V, §"(v)e E
from some m, so S*t"(p) =z € F. Since S|F is an isomorphism, we can find
2&F such that S"t"ez) = 2 = S*+(v). Let us define B(v) =2z We claim that
fiiv) is well defined. For suppose S™(v)e I and S*(v)e F, and we select z and
2z in F such that S7(z) = S™(v) and 8"(z;) = §™(v). We can assume that
N, =i, 80 we have S™(Su(z;)) = S™(#) = S™(z:). Since § is an isomorphism
on F, 2, = 2z, and 6 is well defined. Clearly, 8 is linear.
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CoroLvary D. - Let G be a bounded, open, convex set in a Baxacu
space X, f:el(Gd) — X a k-set-contraction, k < 1. Assume f(2G)c cl(7). Then
[ has a fixed point in el(@).

Proor. = Take xe G and consider the homotopy /f 4 (1 — fjz,. 1f
flz) ==z for z€30, if(x) 4+ (1 — bz, == =z, since If(z) + (1l —zee G for ¢ 1.

Thus in this case the homotopy is permissible and iif, G) =iz, G). One
easily shows thbt #.(x,, @) is given by the lLierscuerz number of the identity
map of a point to itself, so dy(xe, G)=1 and { has a fixed point. If fz)==
for some z€2G, of course we are done immediately. Q.E.D.

It is clear that if Oe 7 any open set and f(z) = sx for § =1, and x €236,
then the same proof shows f has a fixed point.

Next, let us establish a commutativity property. The reader should note
that in the proof of Theorem 3 below, we write v generically to denote mea-
sure of noncompactness in two dilferent metric spaces, X, and X.. Of course

the measures of noncompactness in these metric spaces actually are, in ge-
neral, different.

TueoreM 3. - (The ecommutativity property). Let G; and G. be open sub-
set of spaces X, and X,, respectively, X;e¥. Let g :G,— X: be a k-set-
contraction and g.: G. — X, be a k;-set-contraction. Assume that 8§, = [z egr
((2)|(gegr)(z) = x| is compact. Finally assnme that kk. < 1. If ki =0 we only

ueed assume g is continuous and defined on cl(@.). Then we have iy(g.g,
QTL(GE}) = iy(hg, 91_|(Gl)).

Remang. - If gf'(G-z) is bounded, (g.g.)(z) == 2 for xecl(g{'i{Gg)) ~ gf'(Gg).
and k%, <1, then 8, will be compact.

Proor. - First we show that we can assume (7, and G: bounded and g
delined on el(G). Since & is compact, by Lemma 1, Section C, S = \IEﬂa_l
(Gh): (gug-)z) = z | is compact. Let U; = G: be a bounded open neighborhood of &
with el(T)=@; and let Hi= [zeU:g(zx)el;', .= |xe U.: g(z)e U;}. By
Lemma 1, Section C, it is easy to see that H; is an open neighborhood of S,

Thus ix(g:gi, g (64) =ix(g:9:, H) and similarly for H,. Since Hi=(g
U)y=NU;) and H:=(g.| U,)~'(U)), we see that (since we can restrict attention
to Uy and U,) we may as well assume () and G: bounded and g defined
on cl(G).

Thus assume @ and G, bounded and g; defined on c¢l(G). Tn the notation
of Theorem 3, Section C, it suffices to show K,qq and K, ... are compact. If
k=0, we know that ol (gy(@)) is compact, so K, = cog(G) is compact. Also,
we have K.= cogiuG.[) K)) = cogiclG. ] Ki). But ecl@ () K, is compact and

g: is continuous, so g.(cl@: [] K,) is compact and K. is compact. Since Ky 2D Koaa
and K: > Kevan, Koaa and K., are compact.
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Proor. - Suppose BC 4 and y(B)=r. We have to show that FIB X M)
can be covered by a finite number of sets of diameter <<kr 4 ¢ for every
¢ > 0. Select e > 0. For each nie M there is an open ball Bj.,m) about wm
sach that if glm', m) < 3(m), d(F.1z), F.lz) < /3 for z € 4. Since M is compact,
cover M by a finite number of ball By, m), 1 <i< n.Since F,, is a k-set-
contraction, there exists a covering of F;‘tBl by a finite number ot sets 8 s
l<j<mn, of diameter = kr+4e¢/3 We know that yIN.s(S) <kr+c. On
the other hand, suppose that x & B and m e M. Then for some ¢, s(n, ) < a0,
so that dF(z, m), Fiz, m) <e/3. Bat Fiz, m)eS, for j, 1 <<j<n, so
Fiz, m) e N,;(S;). This shows FIB X M) ()., ;N.5(8;), so that y(F(B X M)=<kr+c.

It S=|zed:Fx, m)=z for some me M|, since 4 is closed and M
compact, it is clear that S is closed. Also, we see that SC RIS < M), so
1S) < (S X M) << ky(S). It follows that y(S) =0, so § is compact.

Q.E.D.

Cororrary 2. = Let 4 be a closed, bounded subset of a Baixacn space
X, t: 45X a k-set-contraction, k < 1. Let I denote the identity map. Then
I—1 is a proper map, ie., (I— f)~' (compact sct) = compact set.

Proor. - Let M be a compact subset of X. We want to show that
(I — p~"(M) is compact. Let Fiz, m) = fiz) + m, v € 4, me M. Clearly the con-
ditions of Proposition 1 are met, so jz: Fiz) 4 m ==z for some me M| =
= (I — fy"(M) is compact. Q.E.D,

Recally that a proper map from one metrie space to another is closed
{that is, takes closed sets to closed sets), so that I — f is closed.

CoroLrary 3. - Let & be a bounded, open subset of a space Y, Yes.
Let J=(0, 1] and let F:cl(G) X J— X be a continuous map such that
Ffz) = Flz, ) + z [or zecli@) — G. Assume that each F, is k-set-contraction,
k <1, k independent of ¢. Finally assume that for each feJ and > 0
there exista a & > 0 anch that for [{ — 4| <8, ted, and zeclit), |Flz, §) —
— Bz, t))] <¢. Then we have iF., G) = iyxF, Q).

Proor. - By Proposition 1, for 4 cl(@), y(F(4 X J) < ky(d), 8o all the
concitions of the homotopy property are met. Q.E.D.

Cororrary 4. - Let f, and f, bhe, respectively, k, and ki-set-contractions,
fiiel(G)— X where 7 and X are as in Corollary 2, &, < 1. Let Piz, t) = #f,lx) -
+ (I — thlx), ted = [0, 1]. Then y(F(4 X J) < ky(4), k = max (k,, k).

Proor. = F, = {fo 4 (I — tify is a k-set-contraction, so it suffices to show
that ¢ — F, is continuous. fi[cl(@)] and fi[cl(G)] are bounded sets, say bounded
by M. Thus we have [{fufz) + (1 — Hfilz) — fofoiz) — (1 — dfim)] < ¢ t
Ifolz)] + [ ¢ —to [[#f2)] < 2|t — f,| M. Thus the conditions of Proposition 1
are met, Q.E.D.
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Taroreym 2. - (The homotopy property). Let I =0, 1] and let @ bhe an
open subset of X X I, Xe& Let F:Q2— X bhe a continnous function and
assume that F is a local strict-set-contraction in the following sense: given
(z, t)e Q, there exists an open neighborhood of (z, {) in 0, N, such that
for any subset A of X, UF(Ni o (A X I < kg grl4), kien < 1. Assume that
S=|lz, HeQ: Pz, t) = x| is compact. Then (in the notation of Theorem 2,
Section D) iyF,, ) is delined for (€l and #«(F., Qo) = iF, ).

Proor. = By Theorem 2, Section D, (using the nolation of that theorem)
it suffices to find an open neighborhood 0 of 8, 0=, such that K.(F 0)
is compact. Because F is a local strict-set-contraction and because S is com.
pact, there exist a finite open covering of § by bounded open sets N; in Q,
1 <i<mn, such that for ACX, y(FIN:N (A X I = kiy(d), b < 1. Set
0= (N and k =max k| <1, Just as in the proof of Lemma 1, for
AC X we find ¢(FON (4 X I'N< ky(4).

Recall that K.(F, 0)=coF(0) and K.y.(F, 0) = co 0[] (K, X I)), and for
notational convenience set K, = K, (F, 0) and K, = K F, 0) = .aK.. To
prove our theorem it suffices to show y(K. — 0, since then K. will be com-
pact. Since 0 is bounded, F(0) is bounded and y(K:,) = M is defined. Generally
B o) = yloo PO [ (K X 10 = Y(FO ) (Ky X TN kylK,). This shows y(Knp) <
= kM —0. Q.E.D.

Coronrany 1. - Let I=[0, 1] and let © be a hounded, open subset of
X %I, Xe# Let F:cl(Q)— X be a continuous function and assume
Flz, &) += = for zecli)) ~ Q. Assume that F is a k-set-contraction, k < 1, in
the following sense: for all bounded AC X, y(FIQ (4 X I)) =kv(4d). Then
idF,, O, is defined and iy(F,, Q) = ix(F,, Q).

Proor. - By Theorem 2 it suffices to show S=|(z, e Q: Flz, {) = x|
is compact. Since Fz, §) =z for zecll))—Q, S={(x, Hecli): Flz, 1) = z!
and § is closed. Let T'=jz:(z, € S for some tel|. Clearly (TX II[1 QDS
8o that F(T X I) ) Q1D F(S) = T. Thus we have y(T) < (F(T X 1) Q) < ky(T),
80 7(T) =0 and T has compact closure. It follows that c¢l(T) X I is compact,
and since Scel(T) X 1, § is compact. Q.E.D.

[n order actually to apply Theorem 2 we need some simple conditions
under which a homotopy is permissible. We start with a general proposition.

Prorositiox 1. - Let (M, g) be a compact metric space and let 4 be a
closed, bounded subset of a metric space (X, d). Let F: 4 X M— X be a
continuous function. For any m.€ M assume that for every e > 0, there exists
a 50 such that pin, me)<& implies d(F.(z), F,(x)) < & for all x € A(F,(z)=Flz, m).
Further assume that for all me M, F, is a k-set-contraction. k <1, &k inde-
pendent of m. Then if BC A, y(F(B X M) < ky(B). Furthermore, |z€ 4:
F(z, m) = z for some me M| =8 is compact or empty.
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=hiy), ye 3G, and hy — Cy =0, a contradiction. Thus the hypotheses of
Theorem 3 are satisfied, and we have i\ (Ch~!, h@) = iy(h='C, C-'RG).

E. - The fixed polnt index for loeal strict-set-contractions.

In this section we shall show that onr previous results can bhe applied
in a neat way to vive a fixed point index for loeal strict-sel-contractions.
We begin with a lemma,

Luemua 1. - Let @ he an open subset of a space Xe & and f: G- X a
local strict-set-contraction such that S={ze G |flz) = z| is compact, Then
there exists an open neighborhood V of § such that K.(f, V) is compact.
If @ is bounded and f:eli@) — X is a k-set-contraction, & < I, such that
glz) ==« for e 3G, then S is necessarily compact.

Proor. - If f is a looal strict-set-contraction and we assume S compact,
then for each ze §, there is a hounded open neighborhood N, such that
fIN. is a k.-sct-contraction, k. < 1. Since § is compact there exists a finile
open covering of S, sy N,i, N.g, ey N For convenience set k.‘, =k, and
N. =N, l=isn. Let V=)' N;. To show that K.(f, V) is compact, it
suffices to show that [V is a k-get-contraction for some k < 1. Lot k = max
{ki:1=<=i<n| and let 4 be any subset of V. We have f(4)= UJ'_fi.1 [} N,
so that y({{A)) = max | y(f(d ) N << max | ky(A ) Nl << kv(A).

If @ is bounded and f:cl(G)— X is k-sel-contraction, &k < 1, such that
flz) =2 for z€3@, S=|(zecll@:flxi=2z' so 8§ is closed. Furthermore,
S =f(S), so y(S)=<ky(S), k<1, and we must have y(S§)=0. It follows that
S is compact. Q.E.D.

Let & be an open subset of a space X e# and assume f: G — X is a
local strict-set-contraction snch that S=|{ze€ @ /f(z)==z! is compact. By
Lemma 1, there exists an open neighborhood V of S such that K. if, V) is
compact. By the results of the previous section there is defined a generalized
fixed point index iyf, G) = bxpi i VN XN EL(f, V). We now examine
how Theorems 1-3 of Section D translate to our context.

Turorem 1. - (The ndditive property). Let G be an open subset of a
space X €& and f: G - X a local striet-set-contraction snch that S= z€ G:
flz) = x| is compact. Assume that SC @G, ) G2, where G, and G. are disjoint
open subsets of . Then idf, @) = ixlf, G) 4 ixdf, Ga).

Proor. - By Lemma 2 there exists an open neighborhood V of & such
that cl(VIC G and K.f, V) is compact. By our definition idf, G) = i\f, Vi
and 4df, G)=idf, G;NV), j=1, 2. By Theorem 1, Section D, i.(f, V)=
=idf, G 1 V) +ixlt, G:[1 V). ().E.D.
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We have also shown that onr generalized fixed point index agrees with
the classical lixed point index for compact metric ANR’s, at least when
both are defined. It is natural to ask if our fixed point index agrees with
the the Lerav-ScEavper fixed point index, or equivalently with the appro-
priate Lerav-Scmavper degree. Let ¢ be an open snbset of a Baxacs
space X and g:cl(G)— X a continuous map such that g(z) =z for ze 3G .
Assume that g is compact, i.e., glG) has compact closure., Lrrav and
Scuavper then defined a fixed point index for g (and consequently a degree
for I—g, I'= the identity fanction). We shall denote this degree by
deg,s(lf —g, @, 0. On the other hand, K.(g, () is certainly compact, so
idg, () is defined.

Prorostmion 1. ivlg, ()= degu(l — g, G, 0).

Proor. - deg sl — g, &, 0) can be defined to bo iyg, G A), where 4
is any compact, metric ANR in X containing g((). (Other definitions of the
Lerav-Scuavner degree are possible. We shall not prove the equivalence of
these definitions here, though it is not hard to do so). In particular, we can
take .4:@9((}1. But then A D K.(g, G), A is compact and convex, and
g:GNA-=A Thus we are in the situation of Lemma 1, and #4g, & NA4 =
=ik wolf O Kxlg, G)=ilg, G). Q.E.D.

Let us apply the above result to obtain a proposition of some indepen-
dent interest. Proposition 2 is used withont proof in the Browprr-Nrvsssuvax
article [10] in order to identify two different ways of defining a generalized
degree. Needless to say, it can be proved directly without the elaborate ap-
paratus assembled here,

Propositioy 2. = Let ¢ be an open subset of a Bavacu space X,. Let
C:ellG)—> X2 be a compact map into a Baxace space X.. Let h:cliG) > X2
be a homeomorphism such that h(cl(G)) is closed and h(G) is open. Assume
that h(zx) — Ciz) = 0 lor z e el(@) — (. Then we have degs(I — Ch—', hG, 0) and
deg il — h=*C, C-'hG), 0) are defined and equal,

Proor. - Let 3 = @ and G, = h(@ and recall that we are assuming G.
to be open. By Proposition 1 it suoffices to show that #.(Ch~™, G and
iv(h—C, C-(G.) are defined and equal. However, notice that we are in the
situation of the commutativity property (Theorem 3): h~—': G: —» GiC X, and
('t (i; => X,. Thus it suffices to show that the hypotheses of Theorem 3 are
met. Since € is compact, it is clear that K,y and Kgwn Are compact. We
have to show that S, = [z e (A" NG (Ch")e) =z = [re Go|(Ch )z} =2
is compact. Howaver, hiclG) is a closed set by assumption, and CA™' is a
compact map defined on Alel@), so S =z e hlel@ | (Ch—")(x) = x| is compact.
But S, = &, for it (Ch=")(z) = z and = ¢ Sy, then x € h(clG) — WG) = h(3G), z =
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Proor. = To prove the first assertion, it suffices to show that K.gg:, H.)C
C K, and K.lgsg,, H) < Ki,. The proof is by indnction. First consider the
case n = 1. We have Kigig:, H:) = cogilgsH.)) = Eagm’ij =_{ﬁ- Similarly,
using that g (H)C G:, we obtain that K (g, H\) S cogulcogiHy) ] G
CE}BQ;((G[}!(GH (1 G2) = K;. Generally, suppose we have shown I.hatﬁlﬁtglgg, H.)
C Kin— and Kigog , Hi)C Ko . Then we have that K.i(gig., H:) :fn(g'.gguﬂg N
N Eigug:, He) S co(gige) (Ha [ Kznei) = o gilgalHz [ K2aei) [] G1) C co gileogal(z:M
M Kh-l] n )= ‘;ﬂllxzn ﬂ' (!]1'___= Ii.-z,..'.. i Similarly,_we find that If,.{.ny-_)gl , 1)
= 00 (g2g1) (H:1 (] Kolgegr, H)) S colgag) (Hy [ Kan) = €0 go(gh( Hi [) Kon) N Giccog:
(cogi(G2) =K., This completes the inductive step and proves our first assertion.

We have shown above that K,u—1 D Ky, and Ki D Kiupa. To prove our
final claim it thus suffices to show that g,: (i, [) Koy = Koayy and go: (42 [)
n Honoy = Ks,. However we have that glt(!‘L n K-_'JCEBQH‘G[ ﬂ Klu) = ]"_‘n-‘-l
and golGs ) Kyue1) © 0 go( (s [| K2a1) = Kia, 80 we are done, QE.D.

Tueorex 3. - Let G, and (7. be open sets in spaces Y, and X, respe-
ctively, Xie &, i= 1,2, Let g,: Gh — X: and g:: G: = X, be continuous maps,
Assume .??=1;csg,_1(£"r‘1j',tgggl]lxj=zi is compact. Finally, assume that K.,
and K.y, are compact, where the notation is the same as in Lemma 2. Then
we have that ivig.g,, gi'(G2) and inghg:, g (Gh) are defined and equal,

Proor. - Let S= [z e gz_’lG!Ji(Qﬂi){m =&', We know that & is compact,
i=1, 2, solet H; be an open neighborhood of S such that cliH,)c g (G
and cliH:)c g7 '(G)). By Lemma 2, we know that K.igugi, Hi) K en and
Hoghg:, H:) < Koaa, 80 that both these sets are compact and i\ (g.g., H,) and
ivlgig:, H2) are defined.

We also showed in Lemma 2 that g.g:: Hi () Kevon — Keven and gig. : Ha ()
[) Koda => Koaa. By Lemma 1 of this section, it follows that iy lg.g, H)) =
= IKyonlfagn, Hi (1 KZ,,) and ix(gige, Ho) = ixg,q\009:, H: [) K.,,). where we
have written K = Koaa[] X2 and K = K.veu [} X). Thus to complete the
proof of Theorem 3 it suffices to show that ik (g:g1, Hi ) K. =iy,
H:[1K,,,). Bu we showed in Lemma 2 that g : G (] Koven — Koaq and
g2 G2 ) Koaa = Kovan, so it follows that g,: (5[] K, .~k . and g.: G
N Kyqq—> K., By the commutativity property for the ordinary fixed point
index, and the fact that all fixed points of g.g, in Hy K = 8y lie in
gr'(G2[1K%) and similarly for gig., we obtain ix _ (g.g:, oG ) Kx )=
= oGy HL () KL ) = dkgaalgnge, 97000 N K, ) = dxgaglonge. He [V KD,
This completes the proof of our theorem. Q.E.D.

Let us now take stock of our progress. In Theorems 1, 2, and 3 we have
proved, respectively, generalizations of the additivity property, the homotopy
property, and the commutativity property. We have not generalized the nor-
malization property here, but we shall do so in the next section.
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Turoren 2. - Let T=10, 1] and let 2 be an open subset of ¥ X I,
Xe& Let F:(2— X be a continuous map and assume S=|(z, t/e 0:Flz, =1z}
i3 compact, Suppose there exists an open subset 0 of () such that S0 and
such that if we set K,(F, 0) = coF0), K.F, 0)= coFI0O ) (Kaes X I, n> 1,
and K.(F, O) = [1..K.F, 0), then K.(F, 0) is compact. Then if we set
Q=lz:(z, e ' and F, = F(-, 8, ix(F,, Q) is defined for ftel and
inFo, Qo) = ix(F., )

Proor. - For convenience write K. = Ko(F, 0) and K (F,, 0,) = K, .,
where 0, = {z:(z, f)e 0. It is clear that O, is an open neighborhood of the
fixed points of F, and K. (F,, 0)C K.(F, 0), a compact set, Thus i(F,, Q)
is defined. As usual, write KX =K. X and £ =K.  [1X.

Next observe that K, = K, (F", 0)> K,;., for Ky oK, and if K,> K.,
Kipn=coFO[] (K. X IN2Deo PO [ Kagr X I) = Kayo. It is also clear that
F:0(Kw ¥ I)—> K~. For by our construction F:0[) (K, X I)— K., so
that F:0[](Kw X I)— ()s=2K, = K. Consequently # takes 0[)(K% X I) to
K. Considering F as a homotopy on the open set 0 [J(KZ X I) in KX X I,
it is clear that the conditions of Theorem 2, Section ', are met, so that
ik (Fo, 001 K2) = ixo(F1, O, [1 K2). However, K, D Kx,,, 80 that by Lemma 1
we have dxs (F,, 0,1 KX) = ixs, (F,, 0. N K* )=idF,, 0,). Combining these
results, we see that ix(Fg, Qo) = id{F\, Q).

Cororrary 1. - Let & be an open subset of X I, Xe &, I=][0, 1].
Let F:cli) —» X be a continnous map such that Fiz, ) == « for (z, ) € cl(Q) ~ .
In the notation of Theorem 2 assume K. (F, Q) is compact. Then
Tv',ﬂFu, ﬂu) -——-1‘1“'11. ).

Proor. - The open set 0 of Theorem 2 is provided by Q itsell. Thus it
suffices to show S=|(x, {) = | is compact. Since Fiz, f) ==z for z € cli}) ~ Q,
S={(z,h==z!, and S is closed. Thus we only have to show S is contained
in a compact set. llowever, if F(z, f) = z, it is easy to see that z e K.(F, (),
a compact set. R.E.D.

Before proceding to our next theorem, let us prove some facts about a
general construction,

Leyma 2. - Let G, and @, be subsets in Bawacm spaces B, and B, re.
spectively, Let g;: G, — B. and go: G» — By be continuous maps. Let K, = co
G, K, = 6'69;. G.[1K,) and generally let K. = cogl(Gi ) K2) and Kopin =
= -[!Bﬂz[Gﬂ n Kz--{-l)- Let Keaa = n,,“;lKeu—n and Koven = ﬂ,’.";,.Kz.. Let H, be any
subset of gr'(Gi) and let H: be any subset of g'(Gu). Then we have

(1) Keovea 2 Kulgogn, Hy)y, Koaa D Kulgng:, Ho).
(2) ﬂﬁgl:Hl nKavsu‘—*Km'en,- glgz:HinKodd —> Koau -
3) g1:Gi [ Keven = Koaay 22 G2 [] Koaa = Keven«
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is an open subset of K%, and K* and K% are compact, metric ANR’s, since
they are finite unions of compact, convex sets).

Proor. - By our comment above, K* = JigAK ) C), where F is a linite
subset of I, X=|JiesC, and notation is as above. Then we have
K:=UieileC) It is clear that K= Kxlg, G) D K. g, G K*), so that
Theorem 5, Section C, implies ixig. G [ KY) = ixs (g, G [ K3 Q.E.D.

Now let (7 be an open subset of a space X e & and g:el(GG)— X a con-
tinnous function. Assume g(z) =z for v € ¢l(G) — ¢ and suppose that K(g, ()
is compact. Let us write KX = X [ K.lg, () and define the generalized fixed
point index of g, isg, G)=ixs (g, G[)K%). Notice that K% is a finite union
of compact, convex sets, hence a compact, metric ANR. Also observe that
glz) f=z for z e cl(G [ K%) ~ G KX, since this set is contained in (cllG)~ G)KZ.
Thus we see that ix<(g, G [| KX) makes sense.

There is still one problem with our notation, however. If X is a finite
nnion of compact, convex sets, the fixed point index ixlg, () is already defined.
We munst show that ivg, G) =ixs (g, G[]KZ) in that case. Tet K = coX.
however, so K*=K[1X =X and apply Lemma |; we obtain g, ()=
=iy, G (1KY =ixslg, G [ KZ). Thus our notation is permissible.

We want to show that the generalized fixed point index satisfies pro-.
perties like those of (he ordinary fixed point index.

Theoren 1. = Let G be an open open subset of a space XY e & and g a
continunous function, g:ecl((i) — X. Assume that glz) =z lor z e cl(G) — G and
that Kelg, () is compact. Let S = |z € G|g(z) = =z} and assume that SC G, J 6.
where (; and (G, are two disjoint open sets included in 7. Then i\g, () is
defined, i = 1, 2 and idg, G\ + i:g, G2) = ixg, G).

Proor. = Notice that K«(g, G)c Kelg. G) 8o K.(g, (i) is compact and
ixlg, @) is defined. For notational convenience let us write K% = X [ K.y, ()
and K%, = X[ EKxlg, G). By the ordinary additivity property, we hav
g, O) =g (g, G KD =ik (g, G| K2 + ixr (g, G2 [1 K&). However, by Lem
ma 1 (where we take the set K to be Kulg, (), we obtain ix g, G, | K3 =
=ik, (9. G, K3, ) =ixg, G). Thus we are done. Q.E.D.

Now suppose g: (G — X is a continuous function, where (i is an opes
sabset of a space X e & Notice that we are not assuming g is defined o
cl{(). Assome that S = |z e (|g(z) = z! is compact and that there is an open
neighborhood V of S such that cl(V)c @ and K.(g, V) is compact. Then we
define ixlg, G) =ig, G). Just as in Section B, by using the additivity pro-
perty and the fact that ixlg, G) =0 if g has no fixed points in G (this follows
immediately from our definition), we see that this definition does not depend
on the particular V chosen and agrees with our previous definition when 4
in defined on cl(G) and K.(g, G) is compact.
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the functions we study in this section may provide greater flexibility in ap-
plications. Thus one can prove that the function f considered in Corollary 3
of Section A is a k-set contraction, & <1, with respect to some equivalent
norm on the Baxacm space, but the prool of this fact is much more difficult
than the proof of Corollary 3 itself. However, the proof of (orollary 3 shows
simply that f lies in the class we consider, so the resunlts of this section
apply to it without proving it is a k-set-coutraction. k < 1, with respect to an
eqnivalent norm.

Let us begin with a general construction. Let 4 be a subset of a Bawaen
space B and let g: 4 — B be a continuous map. Let K, = cog(d), where co
denotes the convex closure of a set. Let K,=cog(A[] K.o), n> 1, and let
Ky = [Naz1K.. We firet claim that K, D K.j1. This follows I)Pmuse K, ._a)
g AV D K: = coglA N K and if K,_, D K., K,=cogld[) K,_)> coglA N Ku = Koyp1.
Next notice that g: A [) Ko — K, for we have g(A N K)Scogld | K= K.y
and K.DK,p1. Finally, of course, we sec that K, is a closed, convex sel.

The above constroction will be used repeatedly, so we adopt some nota-
tion concerning it. We write X, = K.lg, 1) and K. = K.(g, A). If the set A
and the function g are obvious, we may simply write &, and K. in the sequel.

Before proceeding further let us define the class of metric ANR's X we
shall study. Let X he a closed subset of a Baxacu space B and assume the
norm on B induces the metric on X. Suppose there exists a locally finite
cover | Cilie I| of X by closed, convex sets (;CX. More explicitly, suppose
we have closed, convex sets (' B, ie [, such that X = (J.e: (i, and such
that for each = e X there is an open neighborhood 0. of z such that 0,[) (;
is empty except for linitely many ie I. If X is as above, we shall write XY e §
Theorems of HANNER and Pavais (18, 34] imply that if X e &, X is a metric
ANR. Notice that if X e & is a metric ANR contained in a Banacr space I
and if K< B is a compact, convex set, then X [] K is a finite union of com:
pact, convex sets. For suppose X = (Jigs(i, €0 a closed, convex set in B.
For each ze A, we can find an open neighborhood 0, such that 0.[\Ci= 0
except for finitely many ée /. Since K is compact, we can cover K by a
finite nomber of these open sets, O.l, . Then we have K[| (=
unless ie F, P = |iel|(; ﬂO, 4@ for some ; l<j<n!, a [linite aubaet
of 1, and Xﬂh’—-U‘erlﬁﬂ(’J

Having established notation, let us derive a simple consequence of
Theorem 5, Section .

Lemya 1. - Let G be an open subset of a metric ANR Ye§, XCB, B
a Baxacm space: Let g:cl((G) = X be a continuous map without fixed points
on ¢lig)— G and assume that K. (g, G) is compact. Let K be any compact,
convex set in B such that KD Ky and g: G [ K — K. Let us write
Ef =K. X and K* = K[ X. Then we have ixlg, G 1 K*) = ikglg, G K2).
(Notice that this makes sense since | K is an open subset of K*¥ G K%
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f:GNA, >4, for l<n<oc and let Ag = Nazida. Then diyf, G)=
=iaf, G Ao

Proor. = Let (i, he an open neighborhood of G such that el(Gy)c (.
Then iy(f, G) = i.f, (G0 and i, (f, G [] de) = du(f, G, N A4dx). Lemmas 5 and
6, however, imply i/, G =i (f, Gi[] Ax). Q.E.D.

Using Theorem 4 we can obtain a result which will prove more useful
to ms.

Tueorew D, - Let A = [J7Z,C: be a finite union of vompact, convex sels
C; in a B-space. Let B = [J/,D; be a union of compact, convex sets D,
sach that ;> D;. Let 0 be an open subset of A and f:ell)) > A4 a conti-
nuous map which has no fixed points on el(0)—0. Agsume that f. 0[] B— B,
Finally, let K, = cof(0), K, =cof(0 ] K.—), 2> 1, and Ky = [],..K,. Assume
that BD K, [1 4. Then we have i f, 0) = ixlf, 0 B).

Proor. - et us set K, = K, [) A. We want to apply Property 5 to the
K, in order to show that i/, 0) =i (f, O A%), where K = (1. ha= K5 [1 4.
First notice that [: 0[] K, — K.y, n> 0, for we have f(0[] Ko = fI0IC K. [)
1 A= Ki and, generally, FONK)=7O0NK)Zcof(0O K] 4= Kiy1. Next
observe that K, D K,;.. The proof is by indaction: K, = Enf[()}D'o_oflUﬂ K
= Kz, and if K Kn+l, A'n-H. = EI{O N K. :)E(_]f(l’) n [\'n.;.li = K...}.:- Thus we
have that K, = (Jm(K.NC) and (K. C)D (K. C). By Property B,
iddf, O =ik (f, 0N Ki) = ix_qdf, O) K.

Now suppose B is as above. Consider the decreasing suquence of ANR's,
Bi=B, B,=BNK, n=1 Since BDOK.|A, it is easy to see that
MaziBa= Kp ) A= K. Since f:0N K,— Kuy1, [:0) Bs—> B.j1. Finally,
B,= Ui=iDi N Ky, and D K, > D) Kuya. By Property 35, isf, 0[] B) =
=Ix;n‘f, 0N K%)- Q.E.D.

We now have those refinements of the classical fixed point index which
we shall need, and we can proceed to more significant generalizations.

D. - The fixed point index for functions like k-set-contractions.

In this section we shall define a fixed point index for certains functions
which hehave like k-set-contractions, k < 1. Our primary goal is to lay the
groundwork for defining the fixed point index for k-set-contractions, & <1,
and then for « nice » 1-set-contractions (including condensing maps). However,
some of our results here may have independent intorest. It will not be hard
to see that the class ol functions we shall consider includes functions which
may not be k-set-contractions, k < 1, with respect to any equivalent norm;
and in faot such maps actually arise in applications, (See [30)). Furthermore,



AP )

bk g

by e e, T L

S et SR

TR B Y

P E S

R rieatoa

———

nplies that
ANACH 8pa-

wod U in
er of open
+ gee that
= 4;, and
on B;.
S-‘; ={z e
T 0
A compact

¢} is equal
4 we [ind
vever, it is
3 (0g) =
alts in the
S 0y)).

necessary
igllfafi) Ty,
0.
Q.E.D.

nental pro-
properties

| @t l = ,‘l;.

a Bawacm
1. Assame

Ifielith—4

AT L

Trm==

e

Ay —> z’ln+| .
idf, G =
lx). We do
e following

any >0
A,, delined
is a retra-

5] <& Lop

Rocer D. NussBaum: The Fixed Point Index for Local, efc. 237

Resmark. - The strength of the above assumption is that not only is A
a deformation retract of 4, for n large enough, but a deformalion retraction
H, can be chosen which moves points very little, i.e., |H,z, #) ~z| <8 for
zed, tel. It we assumed f defined on all of 4, and f: 4,— A4, (s0 that
{he various [ixed point indices would be Lerscurrz numbers), then we would
only need dx n deformation retract of A, for n large enough in order to
show iq(f, A =Auf) = A0 (f) =idalf, Ax)

Proor. = flz) =2z for ze€cl(G) — G, and cl(i) — G is compact, so we can
find 2 > 0 such that [f(z) — z|=5>0 for zecli?) — G. Select H, as above
for this &, so that H, is defined for n=ni%) and |Hdz, ) —z|<? for ze A,
tel.

By using Property 4 repeatedly, we see that i (f, @) =i f, G 4=
—_—i_,ﬂﬁ.j[f, G [ Aus). (Notice that if .1, G is empty for some n, f has no
fixed points in G, since all fixed points lie in A, NG A, 1 G. Thus in
the case that A, [] G is empty for some n, iy \f, 4a ] G) =0 for all m, and
the lemma is proved). Consider the homotopy Flz, §) = H.;5)(f(2), £), F: dags) X
K I— dugsy» We have [H)(f(z), ) — f(2)] <3 forz e ellG [ Aus) — G ) Aus).
It follows that PF(z, )=z for zeclG ) Adus) — G ] dusy, 80 i,;m'(fr‘ln, 0J,
G ) Aua) = byl G ) Augs) = La, ) Pl 1), G Aas). However, Flz, 1)e d
for ze (¢ [) Ay, 80 by Property 4, i..:"mf_ff’l-. 1), G Aus) = b4, (F(s, 1)
|G N Aoy G N Ax) =i (f, G A). Q.BE.D.

Of course the reason for proving Lemma 5 is that its hypotheses can be
verified in a case which will be of interest to us.

Lemma 6, = Let A, = [J7=iC.,.» be a union of m closed, convex sets in
some fixed Baxacu space X, m independent of n. Assume that A, is boun-
ded, lim v(4,) =0 and € ,DC. .1 for l<=i=<m. (We allow the possibility
that (. is empty). Then for any 3 > 0, there exists a sequence of deforma-
tion retractions H,: A, X I — 4, defined for n=n(3) and meeting the condi-
tions of Lemma 5.

Proor. = By Corollary 2 of Section B, given 5> 0, there there exists
ni8) such that for n» ==n(3) there exists a retraction R.: 4d,— 4. = Nuads
such that |BuJz) — 2| <8 for z€ A. and N z)e Ci.. if ze (' ,. Set Hie, )=
=l — #ir 4 tR,(x). Tt is clear that H, satisfies the required conditions.

Q.E.D.

Treorem 4. - Let A4, = {JLiC. . be a union of m compact, convex sels
Coa in a fixed Banaca space X, m independent of n, 1 <n < oo, Assume
that €, Cinps for L <<n <oc. Let (¢ be an open subset of 4,, f: G —= 4,
a continuous map such that S=|ve G:f(2) =z} is compact. Assume that
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jl(fl'll{)gln = ip (g1, gv (U0 and similarly for A, and D.. This implies that
in proving Theorem 3 we can assume 4, and A, are subsets of Bavacu spa-
ces Xy and X, respectively. _
Since A; is an ANR, 4, is a rvetract of some open neighboorhood T in
X, by a retraction »;: Ui— 4,, i =1, 2. Cover A, by a finite number of open
balls B,,, 1 <j<=k:, such that eliBp= Ui, i=1, 2. Then we see that
U.”-‘lgalB;j (1 4) = B: is a finite union of compact, convex scts, B, 5 4;, and
r.: B — 4. Henceforth we shall view the maps r; as defined only on B..
We have fir,:ri' 00— 4. B, and fira: 700> A4, B,. It S, = (ze
& (Ar—(r (020 2 (fare) (fira) () = 21, wo easily check that §, = ize r;“‘(/‘f‘n.l]gn,-

iralfinlz) =z' =ize (T’tO_-}:tf'g/ijul =zl=8,, so that & is a compact
sabset of (fir)—"0r2 (D)) = :'T_llfrlt()zh.
Similary, we check that 8: = z e (far)~ri (0): (fir(fara(@) = 2} is equal

to S and is a compact subset of ri'(/7'0,). Applying Lemma 4 we find

that i [(/fralfir), ()= 0] = is[(/ir) (fara) (far)—YrT'(01)]. However, it is

easy to see that (frdlfir) = (LA, (Ar)(frd = (Af (1), (Fr)=' e 0,) =

= (7 17 '(0.) and (far)r7 0 = r2 11 (00). Substituting these results in the

above equality, we obtain ig[(f2/1)(r), rﬁ(/flf)ﬂl}:ig,[{f]f,«_)(rg], r ' (f200).
Now we apply the ordinary commautativity property again:

We have ri: By — 4, (f2f1): f7'0:) = 4: = B., and the other necessary
conditions are met, so i, [(r)(ALf), 7O = ilfofi, FT0N) = is/(fsfi)(r),
T (fT0:)). Similarly, we obtain iy fifs, £7(00) = ia[(ff) ir), r 0]

Q.E.D.

We have now obtained the desired refinements of the fundamental pro-
perties of the fixed point index, We next establish some special properties
which will be crucial for onr further work.

Let us begin by considering the following general situation: Let A = Ay,
42y ooy A, . be a decreasing sequence of compact ANR's in a Bawacn
space (we allow the possibility that the A,'s are empty for n = n,). Assnme
that Ax = ),..4. is an ANR. Let ¢ be an open sabset of 4 and ficlith)— A
a continuous map such that f(z) %= z lor z e cl(4) — G and [:G N Adv> dugi.
By applying Property 4' repeatedly, it is easy to show that idf, Gy=
=i,¢nlf, G ) 4., It is thus natural to ask if iaf, o) = ta lf, GN Ax). We do
not know exactly when it is true that i,(f, G) = i1,(f, G ] Ax). The following
sulficient condition will be satisfactory for our purposes, however,

Lesara 8. - Let d,, /, and G be as above. Assume that for any 5> 0
there exists a sequence of deformation retractions H,: A, X I = A,, defined
for n = n(3) and such that H.(+, 0} is the identity on 4,, H.(+, 1) is a retra-
ction on A., Hyx, i =2 for zre A4, and te I, and [Huz, &) — x| <% lor
ze d,, tel. Then iff, G)= Ly GN A
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the set of fixed points of /iy in f7'(0) is a compact subset of /7'(0.). Then
iulfafis 1700 = dadfifa, £7(00).

Resank. = The fact that 4: is an ANR follows from two theorems. First,
by a theorem of Dusuxpsr [15], a closed, convex sabset of a Bawacu space
is an AR. Second, if two topological spaces (both contained in some topolo-
gical spacel are ANIs and their intersection is also an ANR, then their
nnion is an ANR.

Proor. = By Lemma 1, the fixed point set of /if in f'?'tOil is a compact
subset of /700, 80 éy/ifs, £7(01) is defined. Let S, denote the fixed puint
gel of fify in /2'0y) and reeall that fi.8:— 5 is a homeomorphism,

Let I/; be an open neighborhood of §: such that r:l{U-,-]::f?'tO.l. Let 7,
be an open neighborliood of 8, such that cl Uy f7'0s) and e[/, U] 0;.
To obtain such a £, we simply take an open neighborhood V of S. such
that cl(Vi= 0., and we put [/y =/, (V). Since e¢l[/i(l/)] is a compact subset
of U,, we can cover it by a finite number of balls in X,, say B, .., B,
such that ¢l(B; N A< 0,, l <i=n. Since A, is a finite union of compact,
convex pieces, cl(B; (] 4. is a finite univn of compact, convex pieces, and
consequently so is A = [|i_iel(B; (] 4.).

With these preliminary constructions, we can complete our proof, By
definition, iy(/2/i, /7(0) =iy fofs, Us). On the other hand, by constraction,
Ahc 4; and since A0y, f; is defined on 4 and /2: 4 — 4,. Thus we
can apply the ordinary commutativity property, and we obtain i[/ife, (/2| AV
(U] = dqffafi, U). We now have to show that i./i/z, (o =" (Un] = Eaffifz, Ua)
If we can show this, we are done, for by definition i./ife, Us) = i/, 770
Thus, suppose that (/i/3)(z) =z for zef:'0), ie., z€S,. Since f2: S — 5
is a homeomorphism, z = 73'(z) for some z e S, < U,; in other words, we have
S,y (0. It follows by the additivity property that i /ifs, U = ififs,
) N Vs However, fifa: (U0 N U= AC A,, 50 by Property 4, i/ifs,

TAUM Oo) = idfifas [0 N Ua ) A). We see easily, however, that (2on
NA4=(:l4-Y ), and since S; U, [ (/! A)='({h), the additivity property
implies that i /1/2, (2| AW = dalfifz, (N Ua N A Q.E.D.

Tuaroreyx 3. - Let A4, and 4: be compact metric ANR’s, 0, and 0, open
subsets of A, and A, respectively, and fi:0, — 4, and f;:0: > 4, continuous
maps. Assume that 8y ==z e /7T (0:):(/if))x) =2 is compact. Then i,/ /s,
/740y is defined and ialfife, {"—_T'{D,}] = ulfafy, [T (0d).

Proor. = By Lemma 2 there exist isometric imbeddings j, and j. of A,
and A. respectively into Baxacw spices X; and X.. If we set U7 =ji0),
Di=jid), i=1,2), gpo=ji'fijs' and g =jfoji, and if we note that
g (Un) = julf7102), then Lemma 3 implies that iglfafi, /10 = ol fulfefge
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and f, restricted to S\ is a homeomorphism of S5, onto S whose inverse is
[: restricted to S.. In particular, S, is compact ifl S: is compact.

Proor. - If 2 € 8,, (fifi)(z) = =z so (fif)filz) = filz) and fi(z)e S.. Conver-
sely, if yeSz, (Hif2)) =y, so (Lf)ifdy) = fuly) and fly)e Si. Thas we have

S L 8 2 5. However, it 28, (fillz) =2, and if ye ., (f:filly) =y, 80
fif: is the idemity on & and fif. is the Ident.ity on & and fif> is the iden-
tity on Sy, i.e., fi/S; is a homeomorphism, Q.E.D.

Our next lemma is a standard result, but we include the proof for com-
pleteness.

Leaya 2. = Aoy complete metric space (X, d) enn be isometrically im-
bedded as a closed subset of Baxacm space B.

Proor, = Consider the space B of real valued, bounded, continuous fun.
ctions on X. It feB, |f|= sup |fiz) . Take a lixed point z,e X, and for
X

z€ X, consider the function f.e B given by fuy) = dly, z)— diy, z.). First,
notice that /. is bounded, for |fly) < diz, zo). Clearly f. is continnous, We
now claim that the map j; z— f, is an isometry, For, take r, and z.e X and
consider |f,—f.]. For ye X we have that f.(y)—f. ) = diy, ) —diy, z)—dly, z.)
+ dly, x| = diy, ©1) — dly, 20| < dlz1, 221 %0 |fs, — [u]< dix;, ). Conver-
sely, if wo take y =z, we see that |f.(y) — [,y = diz:, 2)) — dizs, 20) —
— dlx2, 23) + dlzz, 2| = diz1, T2), 80 |f;, — o] =dlz:, 29).

Finally, notice that jX is n closed subset of B, Eor suppose that f:, =9
Then f, is a Cavcny sequence, so z, is a Carcuy sequence, Since X is com-
plete, .z..-—)-:c and consequently f.,>f=g. Q.E.D.

Lesma 3. = Let A be a compact metric ANR and let 1 A= .1, be a
homeomorphiem of A onto a topological space 4,. Let G be an open subset
of A and f: G@— A a continuous map such that S={zeG:flz)=2za' is
compact. Let Gy = k(G) and fi = hfh=" : W(G)) > A,. Then idf, G) = i.if., G)).

Proow. - Notice that i,(fi, G) is delined, since 8 = |ye G.: fily) =y =h(S).
Let V be an open neighborhood of § such that cl(Vic @ and let V), = (V).
By definition we have i/, G)=if, V) and i.i/, G)= iylfv. Vi) To show
idf, V) = d4fi, V1) we use the commutativity property. Since /i = hifh—")= hg
and h:d — A, while g: Vi — A, commutativity implies i lhg, Vi) =i gh, b~
(V) =idf, V) Q.E.D.

Leywa 4. - Let A, and A. be finite unions of compact, convex sets in
Banacm space X, and X, respectively. It is known then that .4, and A, are
compact metric ANR's. Let 0, and 0, he open subsets of 4, and 1. respecti-
vely and let f,:0,— 4. and /::0; — A, be continuous maps. Assume thal
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Remarg. - Notice that il Q=G X1 and F is a continnous function
from cl(G) X I to A sach that Fiz, f) =+ x for z ecl(@) ~ G, then S = {(z, f e
eGX I Flzx, =z =|lz hecliG) X I: F(r, ) =z| is compact.

Proor. - Suppose we can show that every fe has an open neighbor
hood (open in I), O,, snch that i/F., ) is constant for se 0. If we let
U= |tel: idF,, Q) =iF,, £}, it then follows that U is open in I. But
U/ is the complement in I of V= {fel: i/, Q)= i.F,, Qq!, and the
same reasoning implies that V is open. Thus U is open and closed and hence
U=1.

Thus we have only to show that given {, €, there is an open neighbor-
hood 0, such that i(F,, Q) is constant for te0,. Let S = (2, Oz, H eS|
Given (z, t)€S,, we can find an open neighborhood N.X(Ji[11) of (x4, to)
(open in the topology of Q) such that cl(N,)x cltJ, | )= Q, N. is an open
neighborhood in A of z and J, = (fy — ., fy 4 £,) is an open interval about f.
Since S, is compact, we can over it by a finite number of these neighbor-
hoods, say N,‘,Xdel_.' NI, 1=i<mn. Let = == min L &x, s l<=in!, let V=
= UL, N., and let J = (b —¢, to+¢). Then S,V X (/[ I) and cl(¥)X
XelJNHcn.

Let J,=(to—17, to+ 7). We claim that for % small enongh, S CV X
X el N I) for tecli, N I), The proofs is by contradiction. Suppose not.
Then we can find (z., #,) € S such that f, = ¢, but z, € V. Since S is compact,
we can find a convergent subsequence (z,, l'nl.}——n:l', o). By the continuity of
F, Flz, to) =z, so (z, l)e€S,. But ;r,,‘_&’ V,s0 €V since V is open. This is
a contradiction.

We arve almost finished. Select V and % as above. F is a continuous
function on cl(V) X el(J, ] 1), and, of oourse, cli, (| I) is a closed interval
of real numbers. By consiruciion we have Mz, f)==2 for zecl(V)—V and
teclJ, | I). Thus, by the ordinary homotopy property we find iJ(F,, V) is
constant for {ecli/, [ I). However, for tecll/, [1 1), V is an open neighbor-
hood of {2z | Fiz)==2z!= z|(z, €S, and we know that cliV) Q.. Thus we
have idF., V)= iJF., Q). Q.E.D.

The normalization property in our new context is the same as before,
and we do not repeal its statement.

Thr proof of the generalized version of the multiplication formula is so-
mewhat more involved than the previous results, First we need a few simple
lemmas.

Lesmya 1. - Let G, be an open subset of a topological space 4;,i=1, 2.
Let fi: Gy — 4. and f:: G: — A, be coutinuous maps. Let § = iz e TG
(fof)(@)=a! and let S; = |z fz (G :(fif:)(z) = x|, Then f takes S, into S:
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As a special case of Property 4, we have the following property, which
we shall use repeatedly:

4. - Let 4 and B belong to a, Ac B, Let f: A— B be the inclusion.
Let @ be and open subset of B and g : cl(G)—> 4 be a continuous map with
no fixed points on cl(G)— G. Then we have isfg. @) =g, G)=idgf, [~
(G =iddg, N A).

Let us begin our generalizations with a slight widening of the definition
of the fixed point index. Let A belong to a and let @ be an open subset of 4.
Let g : G — A be a continuons map and assume that S = |z e G glz) = z| is
a compact subset of @G. (S may be empty. By compact we shall always mean
compact or empty!. Clearly we can select an open neighborhood V of S such
that cl(V) G. We deline isg, G)=idg, V). We have to show that this de-

finition does not depend on the particular V chosen and agrees with our

previous definition when g is delined on cl(@). To see that the definition is
indepeudent of V, let V, and V, be two open neighborhoods of § with
eliVic= G, Then Vi[] V., is an open neighborhvod of & and cl(V, ] V. 4.
It we consider the disjoint open sets V; ~ ¢l(V,[) Vo) and V. [) V., sinee
SCV,[1V, it is clear that the additivity property applies and i.g, Vi =
=idg, Vi~ cllVi[] Vo)l + dalg, Vi (] Vo). Since f has no lixed points in
Vi ~ ellV, | Vo), ddg, Vi~ eliVyi[) Va)) =0 and idg, Vii=lig, V, NVi= i4g, Val
It g is defined on cl(G) and V is selected as above, ig, G)=i.g, @ — cliV))=
=1i4g, V). Thus our definition agrees with the usual one when g is defined
on cl(f).

We want to establish generalisations of the four properties listed above.

Tarorem 1. - Let A belong to @, G be an open subset of 4, and
[:G— A be a continuous map. Assume that S= |z e G|flz) =z| is a com-
pact subset of G and that S @, | G. where G, are disjoint open subsets
of @. Then i,df, G} = i,qlf, G[)—f'" J‘Af, Gg}.

Proor. - Notice that S, = {ze G : f(xr) =z} is a compact subset of @,
becanse 5 ={z:ze () (4 ~ G:)}. Similarly, S: = {ze G : [lz) = z| is com-
pact. Thus we see i,f, G, is defined.

Let Vi be an open neighborhood of §; such that cl(V)= G,. Since @G,
and @ are disjoint, ¥, and V. are disjoint. Let V =V, () V.. V is an open
ueighborhood of &, and el(¥) = ¢l(V,) ] el(Vsy)= G. By the ordinary additivity
property, we have if, Gh) + idf, Go) = idf, V) + idf, Vo= idf, Vi=if, Q.

Trrorex 2. - Let 4 belong to a and let I=(0, 1]. Let © be an open
subset of 4 X I and F' ;| Q — A4 a continuous map. Assume that S = |(z, {je
e Q:Fx §)==z| is compact. Let O, =|zed:(z, )e 02| and F, = (F. 1.
Then we have i (F,, Qo) = 1.4F, Q).
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by Theorem 1 to find an integer n, such that for n = n,, () o is empty iff
(', » is empty. However, €, is a decreasing sequence of closed sets in a
complete metric space Y, v(C; ) =0 and €/.3 wiCy .. It follows by Kura-
towski's theorem that il C; » is empty, (). is empty for n == n,. Selecting
ne =max [ty ], we are done.

To prove the second part of the Corollary, let Ox be the open neighbor-
hood o! Ck » gunaranteed by Theorem 1. By Theorem 1, it sulfices to find
an integer ny = N, such that Ck..C Og for n=>n,. However, by Kuratow-
ski's theorem again, there exists an integer #2x such that €% ,.cC Ox for
n=ny. We merely take n, = max |n,, n«|. Q.E.D.

C. - The classical fixed point index.

Our goal in the next few sections is to define a fixed point index for
k-set-contraction, k < 1, defined on certain «nice» absolute neighborhood
retracts (ANR's). Let us begin by recalling the basie properties of the fixed
point index [6]. Let a be the category of compaet metric absolute neighborhood
retracts (ANR’s) and continuous mappings., Let A belong to @, & be an open
subset of A4, and /: clif)—> A be a continuous function which has no fixed
points on ¢l(G) — G. Then there is a unique integer valued function i(f, G)
which satisfies the following four properties:

1.=-If f:c¢l(G)—> A has no fixed point on cl(g) — G, and the fixed
point of fin G lie in G, |J G:, where G, and (7, are (wo disjoint open sets
included in @G, then i4f, G) =i f, G\) 4+ idf, G:). In particular, if f has no
fixed points in @, this is meant to say that i,f, G)=0. (The additivity
properiy),

2. - Let I denote the clooed unit interval [0, 1]. If F;eliG) X I— 4
(4 belongs to a, of course) is a continuous map, and F(x) = F(x, {) has no
fixed points on cl(G) — @ for O<{<1, then i Fy, G) = idF,, G). (The ho*
motopy property).

3. - It G= 4, then i4f, G) = Alf). Alf), the Lrrscarrz number of f,
eqnals ¥(— 1)* trace (fu), where fu ! Hiy(A)—> HiA) is the vector space homo-
morphism of HiA) to H (A) and HyA) is the Cech homology of 4 with ratio-
nal coefficients. (The normalization property).

4, - Let 4 and B be two spaces which belong to a. Let f: 4 — B be
a continuous map. Let V be an open subset of B and g : cl{V)— 4 a conti-
nuous map. Assume fgy has no fixed poinls on cl(¥V) — V. Let U= [~V).
Then gf has no fixed points on elU)— U and islfg, V)= idgf, U). (The
commutativity property).
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Next let us show that R is aectually a retraction of € onto D. Since
R(x) = s(x) for x e W,, to show K is a retraction it suffices to show R(x)e D
for x e C. Given 2 e C, select J such that xe Uy but ¢ U, for (L > |J|.
Furthermore, if |[L|=|J|, we know that U; [] U; is empty unless LDJ, so
that 8.(@) =0 unless LD J. Now consider R(x)= (w)s{x) 4 ExOclx)rela). If
flx)=1, Rix) =slx)e D. If B(x) < 1, R(x) = b(x)s(x) + (1 — ) Zx(Bxlee)/ 1 — Bla)rlx).
Since rx(x)e Dk C D, for KD.J and since fgfw)=0 unless K OJ, Txlf«lx)/
1 —B(x)jrx(x) is a convex combination of points in D, and hence lies in D;.
If 6(x) =0, we are done. If 6(x) >0, we have xe W, so that sfx)¢ C. for
k¢J and consequently s(x)¢ D, for k¢ J. It follows that s(x)e D, for some
jed.Thus Rfx) is a convex combination of points in D; and lies in D;C D.

Finally, let us suppose that Cx C Ok for all K. Then by our construetion
Ox(@)=0 unless p(re(a)—x)<7z. Also by construction, 8(uc) =0 unless p(sfx)—x)<¢.
[t follows that p(R(x)—ax) < blz)p(s(x)—a) + ZBelz) plrele)—x) < e. Q.E.D.

Cororrary 1. - Let Y be a closed, metrizable subset of an letvs X
Let CCY be a finite union of closed, convex sets (), £ = )= C.. Then
there oxists a compact, finite dimensional (i.e., its range lies in a finite di-
mensional subspace of X) map K. (' — (7 such that Rlx)e C; il x e (..

Proor. - For each JC (I, 2, ..., m| such that C, is nonempty, select
xre ;. For l <j<m, let D, = co|x;je J|, where co(S) denotes the convex
hall of a set S. Since D, is the continuous image of the compact set of or-
dered N-tuples {(A)|LC (1,2, .., m}, Co+=@,jeL, /A, =1] (where N
denotes the number of subsets LC (!, 2, .., m| such that je L and (. is
nonempty) under the map (Ay) = E:Ae,, Dy is compact. It is elear that
D;C C; and that [],e,D;, is nonempty iff [],e,C; is nonempiy for all JC
{1, 2, ..., m|. It follows by Theorem 1 that there exists a retraction R €
= D=7,D; and Rix)e (; if e C;. R is obviously compact and [inite
dimensional, Q.E.D.

Cororrary 2. - Let Y be a closed, completely metrizable subset of an
letve X. Let A7 [J/LiC. . be a union of m bounded, closed, convex subseis
of ¥, m independent of n. Assume that C, . D C .4 for l<i=m, l<n<oc
and suppose that y(4,)— 0, where y denotes the measure of noncompactness
with respect to a complete metric d for ¥. Let Ay = [,.4.. Then there
exists no =1 such that for n =mn, there exists a retraction E,: A,— A
such that R,x)e ¢, , if xeC, ,. If p is any continuons seminorm and
e > 0, there exists an integer n, such that for n >n, the R, can be chosen
so that p(R,(x) —x) < e.

Proor. - If we write () o = [1,.1( ., it is easy to see that AZ|J 7o) € -
Also, it for JC |1, 2, .., m} we put Crou=);g:C 0 and Cj.=[),g:Cra,
U, = [1a21Cs,». In order to prove the first part of the Corollary, it suffices
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then cl(Ux [1 € is empty. But UsC Vi, so el(Ux) ) €, Cel(Vi) ) €, which is
emply.

This completes the inductive step. After m steps we obtain the desired
covering. Q.E.D.

We can now prove our main theorem,

Tuaeorem 1. - Let ¥ be a closed, metrizable subset of an letvs X. Let
CCY be a finite union of m closed, convex sets (;, C= |J/=,C; and let
D = () =D be a linite union of m closed, convex sets D; such that D;C (..
For every subset JC |1, 2, ..., m | assume that D, = [],e/D; is empty if and
only il ;= [),g,/C, is empty. Then there exists a retraction R of C' onto D
such that Rlx)e ;1D if xe C;, 1 <i<m. (In particular, D is a deformation
retract of U by the deformation retraction H(x, {)=(1 — {|R(x) 4 te, 0t <)
Fuarthermore, let p be a continnous seminorm on X and ¢ a positive number.
Then there exist open neighborhoods Og in ¥ of Dx for KC {1, 2, .., m|
(O is empty if Dy is empty) such that if CxC O for all K, B can be
choosen so that p(Rx — ) < ¢ for x e (.

Proor. - For each nonempty Dg, let rx: Y — Dx be a retraction of Y
onto Dg. Such retractions exist since Dy is an AR [19]. Let Oc={xe Y|
pirglx) — x) < e| it Dg is nonempty and Ox be empty otherwise. If O Ok
for all K, let Ox = Oc [ C. Otherwise, let Ox be any open neighborhood of
Cr in C such that Og is empty if Cx is empty. By Lemma 2 there exists an
open covering | Ux| of C such that: (1) UxCOk; (2). If |L|=|K| but Lb K,
Ug ) Uk is empty; (3). It j&€ K, el(U,) N C, is empty. By Property 3 of the
covering it is clear that for all LC (1, 2, .., m| there exists an open nei-
ghborhood W: of el(U;) such that W, ] €, is empty for j¢ L. By Lemma 1
there exists an open neighborhood V of D in C and a retraction s: V- D
such that s : VN Ci»DNCi. Let W= |xe V|a) pslx) —x) <e and b). 1f
xeclUy) for any LC (1, 2, .., m}, then s(x)e W.|. Since s(x)=w for xe D,
it is clear thet D C W; and it is not hard to see that W is open. Thus W
is an open neighborhood of D. Let W, be a closed neighborhood of D such
that W, C W and denote by W, the complement of W, in (. Consider the
open covering of € by (W, Ux [ Wi{] and let [0, 6¢| denote a partition of
unity subordinate to this covering, i.e., supp(f) CW, supp(dx) C Usx [} Wi and
Bi@) ~ Txlelx) =1 for xeC. We define RE(x)= G(w)s(x) 4+ ZxOk(x)r«lx); the
summation, of course, is only over K such that Dy is nonempty and 6(x)s(x)
is defined to be O for ¢ V.

We have to show that R satisfies the claims of the theorem. First, let
us prove that if ®xeC,, Rx)eC,. 1t j@LC{l, 2, .., m|, we know that
UL € is empty. Thus 6,(x) =0 unless je L, and for such L, r,(x)e D, C (.
If x eV, so that s(@) is defined, sx)e ;. Thus Rx) = (wx)s(x) + ¥«Ox(8)sx(x)
is a convex combination of points in C; and henoce lies in (.
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Lexya 2. - Let ¥ be a closed, metrizable subset of an letve X. Let
CCY be a finite union of closed, convex sets C;, C= UL (.. For each
subset JC {1, 2, ..., m|, let O, denote an open neighborhood of ;= [),e,C,
if C; is nonempty and let O; denote the empty set if C; is empty. Then
there exists an open covering | U;| of C (indexed by subsets JC (1,2, ..., m})
which satislies the following properties:

(“ LGCOJ.
(2) If |K|=|J| but K pJ, Uk [) U, is empty.
(3 It j¢ K, cl(Ux) [N C; is empty.

Proor. = We shall construet (U} inductively, starting with |[K|=m,
then considering | K =m—1, and so on. For K|=m, so that K =1, 2, ..., |,
we define Ux = Ok. Notice that UgonlUeD Ugi=aCx and that |[Ux||K|=m|
trivially satisfies conditions (1)=(3).

Assume that we have constructed open sets [y in C for L|=r,m=r>1,
such that Uy~ Ur D U oCp and | U, || L| = r| satisfies conditions (1)-(3) above,
Select KC |1, 2, ..., m| with |K|=r—1. We wish to define Ux. Let
Ax = Cx~ U.=U: and notice that for j¢ K, Ax and C, are disjoint closed
sets, Thus there exists an open neighborhood Vi of Ax such that Vi C Ok
and ¢l(Vk) ] G is empty for j¢ K. Consider all LC{1, 2, ..., m| such that
\L|>|K|=r—1but LpHK, and for each such L, select je K such that
jeL. It (L, j) is such a pair, we know by the inductive hypothesis that
el(l) N G, is empty, so there exists an open neighborhood W, ol €, such
that cl(U:) | Wy,; is empty. Since €, D CxD Ax, Wi, is an open neighbor-
hood of Ag. Let us set Wx = (. ,,Wu ), where the intersection is taken
over all pairs (L, j) such that |L| > |K|, L K, and je K but j ¢ L. Finally,
we note that for K, K'C(1,2, .., m}], |[K|=|K'|=r—1, K=K,
Ax ] Ax is empty, since Ax (] A C Cxyxr, and K |J K’ =r. Thus it is not
hard to see that we can find open neighborhood Zx of A for |K|=7r —1
such that for any two unequal subsets K and K’ with (K| = |K'|=r—1,
Zx [\ Zx: is empty. We deline Ux = Vg [ Wk [} Zx, and we have to show that
(Uc!|K| =7 — 1] satisfies the inductive hypotheses.

Since Uk, |[K|=r —1, is an open neighborhood of Ay, we clearly have
Uik 21Ok C (U x> Ux) U (U kjmr14x) C(Ujg w—1Ux). We selected Vi C O, so0
the first condition on the covering is satisfied. To check the second condi-
tion, we must show that it LC {1, 2, ..., m|, |[L|=|K =r—1, and Lb K,
then Uy (] Ux is empty. If |L| > | K|, select je K, such that j¢ L. By con-
straetion we have (/, [ UxC U, [} Wiv.), which is empty. Il |L ='K|, we
have U.[] UxCZ.[) Zx, which is empty. Finally, to check the third condi-
tion, we have to show that if KC|(1, 2, .., m|, [K|=r—1 and j¢K,
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of closed, convex sets contained in a metrizable subset of an letvs, so that
Ox N D is an ANR (see Section C). Restricting our attention to Cx, | K|=m,
we thus see that there exists a closed neighborhood Uy in C¢ of Cx N D
and a retraction sx: Uc— Ok N D. Let us write 8, =i U sk and Z, = CU Uk,
K, =m. It is clear that s, is a retraction of Z. onto D and that s.(x)e C
it xe C, N Z,.

Now let ns proceed induetively to find 8 and V. Suppose we have found
closed neighborhoods 7, in C. of C, M D for all L such that L|=p,
m =p > 1, and suppose we also have a retraction 8,: 72, =DUU, _ U, - D
such that 8,: 72, N C = G for 1<j<m. Consider Ok, |[K|=p —1, and
notice that by our assumptions 8,:Z, N Cx— D N Ck. Since Z,N Cx is a
closed subset of the metric space (Jx and since D M Cg, a linite union of
closed, convex, meltrizable sets, is an ANR, there exists an extension of the
map 8,:Z, N Ck— DN Cx to an open neighborhood Ux of Z, N Cx in Ck.
Lot us call this extended map s, so 8 : Uy— D ] Ok i8 a retraction.

It is necessary lo consider a smaller neighborhood than Ux. Notice that
Up=,Ui is a neighborhood in U,-,C. of D[] (Uy=pCs). Since Uyy=,C. is
closed in C, Cx ~ Uy_,C; is open in Cg. Thus it is not difficult to see that
Wi = (Cx ~ Upr=pC0) U (U n=p(Us N Cx)) is a neighborhood in C¢ of Cx | D.
This implies that U'x [1 Wk is a neighborhood in Cx of Cx ) D. We take Uk
to be a closed neighborhood of Cx N D in Cx such that UxC Uk | Wi, and
we define 7,1 =D U Ui -1 Ux and 8, = 8, U (Uik jmp—1(8x | Ux)) .

Oar first claim is that this definition actually gives a well-delined ve-
traction of Z,_, onto D. To see this it suffices to show that if K|= K'|=p—I1,
K+ K, and we Ug[) Ux, then sgfx)=sx(@®). But Ux[) U C Cxyx and
KUK'|=p, so it follows, since UxC W, that xe U, for some J with

=p. Since all the sx reduce to 8, on U, |J=p, 8lx) = §,(x) = 8x().

Next we have to show that if xeZ,. (), sulxle (), 1<j<m.

This condition is certainly satisfied if @e D, so suppose that xe Ux ] C,
K|=p—1. 11 it is also true that xe U, for some L such that L|=p,
then by our construction s, .(®) = 8,{x) and by inductive hypothesis &,(x)e C,.
It xel/kNC but ¢ Uvr-,U. we know by the coustruction of Ux that
ve Og ~ Up=C:.. But we also know that x e Ux [1 C;C Cxyy(, so we must
have that je K — otherwise K [j]|=p. It follows that CxC C; in this
case, and since wo constructructed s,_, so that s, : Us—>Cc 1 DCC,
So_ilx)e C,.

This completes the inductive step. After carrying through the above
construction m times, woe obtain s, = s and Z,, which contains an open nei-
ehborhood V of D. Q.E.D.

Our next lemma is somewhat artificial, but it will prove crucial in esta.
blishing our theorems,




226 RoGeEr D. NusseauM: The Fixed Point Index for Local, etc.

number lim sup (y(4")"" is studied in [29] and in the author's dissertation.
(University of Chicago, 1969) where it is proved that lim sup(y(4%)'" = sup
[[A]: 2 eess(A))]. Ess (4) denotes the essential spectrum of A as defined by
Browprr (7],

B. - Geometrical properties of finite unions of convex sets.

In this section we shall establish theorems concerning the geometric
properties of linite unions of closed, convex sets in a locally convex topolo
gical vector space, These results will prove crucial for the theory of the
fixed point index for k-set-contractions.

Let us begin by recalling some basic facts. We shall say that a topolo:
gical space X is an absolute neighborhood retract (abbreviated ANR) if given
any metric space M, a closed subspace 4C M, and a continuous map
[: A— X, there exists an open neighborhood I of 4 and a continuous map
“F:U—X such that F(a) = f(a) for ae 4; X is called an absolute retract
(4R) it F' as above can be defined on all of M. A theorem of Dvarxpai 1]
asserts that any convex subset of a locally convex topological space is an AR,
A classical result says that if X, and X, are subspaces of a topological
space Y and X,, X;, and X, N X; are ANR's, then X, U X, is an ANR.
This implies immediately that if (i, 1 <i<m, are convex subsets of some
letve X, then C= U/_:C, is an ANR. It follows that if we assume (), 1 <i<<m,
ig a closed. convex subset of a metrizable subset Y of a leivs X, then there
exists an open neighborhood I/ in ¥ of ¢ = U_,C, and a retraction B: /- C,
simply because the ideatity map i : C— C can be extended as a map from
an open neigborhood of C to C in this case. It is this fact which we shall
use repeatedly.

With the aid of these results we can establish an essential lemma,

Leuma 1. - Let Y be a closed, metrizable subset of an letvs X. Lel
CCY be a finite union of m closed, convex sets (,, O = U™, C, and let
DcC C be a finite union of closed, convex sets D, C C:;, D= U™, D.. Then
there exists in €' an open neighborhood V of D and a retraction s: V- D
such that s(x)e C; if we C.

Proor. = First, let us establish some notation. We shall denote by J, K,
L, M subsets of {1, 2, ..., m| and by |J the number of elements of J. We
shall write C;= N,e,;C; and D; = N, D;.

We begin with our map s defined and equal to the identity ¢ on D, and
we want to extend s. First, let us extend s to a closed neighborhood Uy in
Oc of CkN D, |[K|=m. (We allow the possibility that C, is empty, in
which case Ux is taken to be empty). Notice that Cx M D is a finite nnion
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The apparatus of measure of noncompactness and k-set-contractions can
be used to establish fixed point theorems. The proof of the following propo-
sition is due to Darmo, but Darso stated the proposition in less generality.

Prorosition 10. = Let ¢ be a closed, bounded, convex set in a Baxacw
space X. Let f: C— C be a continuous map. Let C, =cof(C) and C.=co
f(Cimi) for n > 1. Assume that y(C.) > 0. Then f has a fixed point.

Proor, = It is clear that O, is closed, hounded, convex, and nonempty
and C.D Copa for m = 1. By Proposition 2 Oz N C, is nonempty and compact,

and Oy is ocertainly convex., By our construction f:Cn= 0,41 s0 that
fi:0x— Cx. It follows by Schauder’s fixed point theorem that f has a fixed
point. Q.E.D.

CororLrary 2. = (Darpo, [12]). Let C be a closed, bounded, convex set
and f: C— O a k-set-contraction, k < 1, Then f has a fixed point.

Proor. = It sutfices to show y(C.)-0. But y(C\) = y(eo /(C) = y(f|0)) =
< ky(C), and generally y(C,) = y(co f(C.mi)) = y(f(Caz1)) < ky(Caei). This implies
that y(C.) < E"(C). Q.E.D.

CoroLraRY 3. - Let A be a bounded linear operator in a Baxacu space
X and assume lim sup y(A")'* =k < 1. Let C be a closed, bounded, convex
set in X and B : C— X a compact (not necessarily linear) map. Assume that
if flw)= Alx) 4+ Biz), f: C— C. Then f has a fixed point.

Proor. - In the notation of Proposition 10 it suffices to show y(C.)— 0.
To see this first notice that for S C C, y(f(coS)) = y(f(S)). We have
1(;’(008)}27({(8“ since c0 8D S. On the other hand f(co S)CA[coSl+
+ Bleo S), so by Proposition 3, v(f(co 8)) < v(4(co 8)) + T(B[co S)) = since B
is compact) y(A(co S)). Since A is linear it follows that A(co S) = co A(S),
80 y(d(co S)) < tlco A(8)) = y(A(S)). However, A(x)= f(x) — Ble) so A(S)C
Cr(S)— B(S)={(f(s) — B(s) se S}, This implies that y(A(S)) < y/(8) +
+ y(— B(S)) = y(f(S)), and consequently y(f(co S))<y(f(S)).

Notice that /i = A/ 4+ B;, where B;: C —» X is a compact map and A’ is,
of course, a bounded linear map. Thus the above reasoning implies that
v(filco 8)) = y(f1S)) for §C C. Applying this relation repeatedly we see that
Y(Ca) = YIF(Cumt)) = Y{F (€O FICac))) = 1(fHComs)) = ... = ¥({*(C)). However, f*=
= A"+ B,, where B, is a compact, 80 (/" C))<y(4A"(C)) 4 v(B.C)) =y(4"(C)).
Since lim sup (Y(A")'" =k < 1, for n = n,, y(AY(C) < k"y(C)—0. Q.E.D.

Corollary 3 was proved by Nasmsp and Wone (27] nnder the stronger
assumptions that 1) Ax + By e C for all o, ye C and 2) lim|4"|'" < 1. The
=320



224 Rocer D. Nusssaum: The Fixed Point Index for Local, etc.

It f, ge C(4, X2, dlf, g) is, by definition, sup da(f(x), g(x)). Assume that
gA
for ye A, the map ¥ — V(+, y) form 4 to C(4, X,) is compact on bounded sets.

Proposirion 8. - Let V: Xy X X, — X, be as above and let f(w) = V(z, @)
Then [ is a k-set-contraction.

Proor. - Let A be a bonnded subset of X,. Since the map y = Vi(+, ¥
is compact from 4 to C(4, X.), we can select ¥,, ..., y,€ A, such that for
ye A, there exists i sach that sup dyof Vix, y), Vix, 5)) < . (This is just the

g

translation of the fact that | V{(., y)| C C(4, X .} is totally bounded in C{d, X))
IE we write V(+, y) -= V,, this means that f(4)C V(4 X A)C U NV, (4). Tt
=)
follows that vu(f(4))< max {y(V,(4)) 4 2¢]. But since V, isa k-contraction,
I<i<n L

vel Vy [A)) < kyil4), 80 y:f(4)) < kyi(d) 4 2¢, whence (since ¢ can be taken as
small as desired) f is a k-set-contraction. Q.E.D.

Mappings like V are considered in [10], and we also encounter similar
maps in applications.

Our next proposition indicates another way in which k-set-contractions
may arise.

Proposrrion 9. - Let (X, d) be a metric space and [0/l <i<mn] be a
finite open covering. Let Y be a Banxacu space and fi: 0, - Y a k-sel-con-
traction, 1<i<n. Suppose that [);] is a partition of unit subordinate to

the open covering {0;]. Then the map g(x) = )E Xifx)/{x) is a k-set-contraction.
i==]

Proor. - Let A4 be a bounded subset of X. Then since zn Aife) =1 for
every x & A, it is clear thnt glA)Ceo| U fild N0y} It follows Ehat rigld) <
< rleo (U £14 N 0) =7( U £ non— max (4 0 0)) < kyld). QED.

CoroLLarY 1. - Let B=|x:|ael<1]in a Baxacu space X and let R;X —» B

be the radial projection, i.e. Rlx)= -

i for [x] =1 and Bwx) = & for |x|< L.
Then R is a l-get-contraction, 'l

Proor. - Let filx) =, fix) =0, Aix) = for |&|=1 and Xx)=1

] iI
for || <1, and X,(@) =1 — A,(2). Then R(z) = Ai(x)fi(x)+ ):(e)fa(x), s0 Pro-
position 9 implies the result. Q.E.D.

Corollary 1 is interesting, for as de Fravarivo and Kanrovirz have shown
(16), if dimension (X) >3, R is a l-contraction if and only if X is a Il rerr
space.
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b) Let 4 be a bounded set in X. Then (f 4 g)(4) C f(4) + g(4), so by
Proposition 3, v((f 4+ g)(4) < v(f(4) + g(4) < v(f(A) + vig(A) < kv (d) +
+ kay(A) = (k1 + Ekay(4), so f4 g is a (k) + k.)-set-contraction. Q.E.D.

Notice that in the above we used v to refer to the measure of noncom-
pactness in X and in Y, even though they are different. We shall occasio-
nally do this if it seems no confusion will result.

Let (X., dy) and (X., ds) be metric spaces and f: X, — X a continuous
map. We shall say that f is compact on bounded sets or, occasionally, simply
compact, il given a bounded set 4 C X,. f(4) has compact closure. We shall
say that [ is a k-contraction il d.(f(x), fly) < kdx, y) [or every x, ye X..
We emphasize that f being a k-contraction is much less general than its
being a k-set-contraction.

Prorosrrios 7. (Darmro). - Let (X,, d,) and (X2, d.) be metric spaces and
f: X=X, a continuous map. a) If f is a k-contraction, then [ is a k-set-
contraction., b) If f is compact on bounded sets, then f is a O-set-contraction.
Conversely, if X, is complete and [ is a (O-set-contraction, then f is compact
on bounded sets.

Proor. - a) Let 4 be a bounded set in X and suppose y.(d) = d. Then

m

given ¢ > 0, we can write 4 = ¥ §;, diam (S§))<d 4 ¢. Thus f(4) = U [[S),
j=1 j=1

and since [ is a k-contraction, _diam (fIS)) < k(d 4 ¢). Since & is arbitrary,
vaAf(4) < kd and f is a k-set-contraction.

b) Let 4 be a bounded set in X,, Since we are assuming f is com-
pact on bounded sets, clf(d) is compact and hence totally bounded. Thus
valelf(d) = v:f(4)) = 0, so f is a O-set-contraction,

Conversely, if X, is complete and / is a O=-set-contraction, then for any
bounded A, valclf(4)) = yuf(4)) = 0. This means elf(4) is totally bounded,
and since X, is complete, clf(4) is compact, i.e., f is compact on bounded
sets, Q.E.D.

Using Proposition 6 and 7 we can construct examples of k-set-contra.
ctions. For instance, let G be a subset of a Dawacm space X, U: G =X a
k-contraction and C: @ —s X compact on bounded sets. Then V4 C is n
k-set-contraction.

In our next proposition we want to generalize the above example. Let
(X,.d) and (X., d;) be metric spaces. Let V: X, X X,— X, be a conti-
nuous map. Assame that for ye X,, V(., y): X, - X is a k-contraction, k
independent of y. Let 4 be any bounded subset of X, and denote by ({4, X,)
the metric space of bounded, continuous functions from A4 to X,.
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18 bounded and vaf(d)) < ky.(4). OF course y; aenotes the measure of non-
compactness in X.. i=1, 2. If f is a k-set-contraction, we define y(f)=
—=inf k=0 f is a k-set-contraction|. Given f: X, — X,, we shall say that
f is a local strict-set-contraction if for all x € X, there exists a neighorhood
N, of @ such that f| N, is a k.-set-contraction, k., < 1.

We shall also need a slight generalization of k-set-contractions, k < I,
essentially due to B. N, Sapovskir [36] (SApovskIr actually used a different
measure of noncompactness). Given a continuous map f: X, — X, we say that
f is a condensing map if for every bounded set 4 in X, such that y(d) =0,
vaf(4) < yi(d). We say that f is a local condensing map if every we X,
has a neighborhood N, such that f| N, is a condensing map.

Of course every k-set-contraction with &k < 1 is a condensing map, but
the converse is not true, To see this, let p: [0, 1] > R be a strictly decrea-
sing, nonnegative function such that p(0)=1. Let B denote the unit ball
about O in an infinite dimensional BaNAcH space X and consider the map
f:B— B given by f(x)=p(|a]ix. We claim that f is a condensing map,
but that f is not a k-set-contraction for any k < 1. To see that / is not a
k-set-contraction for k << 1, consider f(V/{0) for 0 < » = 1, where V,(0) is the
closed ball of radius r. It is easy to see that [(V,(0)) D V,,10). By Proposi-
tion 5, ¢{V,40)) = Z2p(r)r and since y(V,(0))=2r, it follows that at best [ is a
glrj=set-contraction. Since g(r)— 1 as r =0, f cannot be a k-set-contraction
for any k£ < 1. On the other hand, f is a l-set-contraction, for if 4 is any
subset of B, f(d)Cco {4 U 0]} and thus yf(4)<v(4 U (0})=y(4). Ho-
wever, we can say more than this. Suppose 4 C B and y(d) = d > 0. Select
r<d/2, define 4, = A N V.(0), 4o=4 N V{0) (V){0) = complement of V,(0)), and
consider f(d)=[f(4.)U[f(4,), Since [ is a 1-set-contraction, yf(4,))<<2r<<d=y(A).
Since g is strictly decreasing and [w|=1r for x e 4., f(A:) C[sa 0= s << plr),
aed:| Coofgr)d U (0] and y(/(ds) < plr)y(4) < y(4). It follows that
7If(4)) = max [v(f(41), vIf(42)] < y(4), 8o that [ is a condensing map. The
same proof also shows that f is not a loeal strict-set-cantraction,

We now wish to state the elementary properties of k-set-contractions
and give some examples which indicate their usefulness.

ProrosiTion 6. (DarBo) a). = Let (X;, d), i =1, 2, 3 be metric spaces.
Assume that f: X, — X, is a k,-set-contraction and g X; - X, is a k,-set-
contraction. Then gf is a kik;-set-contraction. b) Let (X, d) be a metric space
and Y a Banach space. Assume that f: X > Y is a k, set-contraction and
g:X— Y is a ki-set-contraction. Then f+ g is a (k, + k:)-contraction.

Proor. - a) Liet 4 be a bounded set in X,. Then f(4) is a bounded set
in X, and yof (A)) < kiyi(4). Since g is a k.=set-contraction, ys(g(f(4))) < k.y.
(f{4)) < kikopalA), ie., gf is a kik.-set-contoaction.
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ProposiTIoN 3. (Darro). - Let X be a BaNAcE space and suppose A
and B are bounded subsets of X, If we denote (a-+blaed, beB} by
4 4+ B, then v(4 4 B) << vy(4) + 1i(B).

ProPOSITION 4. (DARBO). = Let X be a BANAcH space and 4 a hounded
subset of X, If we denote the convex closure of 4 by cocl (4) (we may also
write co(4) for the convex closure of 4), v (cocl (4)) = v(4).

In general, given a subset 4 of a BANAcH space X, there is no easy
algorithm to determine y(4). However, if 4 is a ball in an infinite dimensional
BawacH space, we can describe v(A).

M. Furt and A. Viegnont have also obtained this result [40], bnt we be-
lieve it was first proved in our dissertion |31).

ProposITioN 5. - Let X be an infinite dimensional BANAcH space, les
B=(a|x|<1] and § = (2/|x]=1). Then y(B)=1(S) = 2.

Proor, - Sinee B = cocl (S), Proposition 4 implies that v(B) = y({S), and
since diam (§) =2, it is certainly troe that v(§)=22. To see that y(§)= 2,

we proceed by contradiction. If (S) <2, we can write S = O T;, where
Jj=1

diam (T)) < 2, and by taking cl (7)) instead of 7, if necessary, we can assunme
T, is closed. Let F' bhe an n dimensional subspace of X and consider
SN F=U|(T;N F). By the LUSTERNIK-SCHNIRELMAN-BORSUK theorem [I7,
=1
p. 50, if the unit spherve (with respect to any norm) in an n-dimensional
vector space V is covered by x closed sets, then at least one of the sets
contains a pair of antipodal points, i.e., points @ and — & for some = on the
unit sphere, In our case this means some 7, N F containe a pair of antipo-
dal points, so for this 7, N F, 2 << diam (T, N F)<<diam (7)), a contradiction.
Q.E.D.

We should remark that the LUSTERNIK-SCHNIRELMAN-BORSUK theorem
is proved in [17] for a particalar norm on R", but since all norms on R* are
equivalent it is easy to see that the unit spheres with respect to different
norms are homeomorphic with a homeomorphism which takes antipodal po-
ints to antipodal points. This shows the theorem true for any norm on R*.
For an arbitrary » dimensional vector space V, we just select an isomorphism
!". V= R* and take a norm on R" such that the isomorphism is an isometry.
The theorem for V follows.

Closely associated with the notion of measure of noncompactness is the
concept of «k-set-contractions » (also due to Kurarowskr, [20). Let (X,, di)
and (X., ds) be metric spaces and suppose f: X, — X is a continuous map.
We say that [ is a k-set-contraction if given any bounded set 4 in X,, f(4)
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Assume that y(4,) converges to 0. Then if we write Adp = r'\A,.. A, is a
nonempty compact set and A, approaches 4. in the I‘IAUHDOHBF metrie.

PROOF. - Since y(dg) < vid,) for all a, it is clear that y(d.) =0, and
gince A, is an intersection of closed sets it is closed. It follows that Ay I8
compact, We have to show A is nonempty.

Let us write y(4,) = d, and select a sequence of positive numbers e,
k(n) 3
such that lim ¢, = 0. By assumption we can write 4, = U §_,, where diam

n—sn j=t

(8,.) << dn+ s, | <j<k(n). We know that for some j, | <j<<k(1), §.. N 4,
k)

is nonempty for all n. Otherwise, we would have 4, =4, N4, =( U §,,) N 4,
/=1

empty for n large enough, a contradiction. Let us denote by 7, the S, such
that S, N 4, @ for all n.
We now proceed by induction. Assume we have found 7, 7., ... T.

such that T, = §,; for some j, lsjgklaj and such that r"l TaN 4, is

t-l

is nonempty for all n. Let us write T'= A Ti. We want to find T.y1 =8 g

i=l

for some j, | <j<<k(m 4 1) such that TN T, N 4, is nonempty for all n.
It for each j, l<<j<km<+1), NS, a0 N As is empty for some n, then
k(m4-1)

for n large enough, TN A4, =TN4d,. N4, = U TS, np N A, is empty,

a contradiction. Thus for some Js ls;gk[m I], TN S NA, is non-

empty for all n. We define T, =S, i1, and the induction is complete.
By our inductive process we know that (,‘1 T; is nonempty and contained

j=1
in 4,. Select x,e N T;,. Since diam {ﬂ I})g diam (T,) << dn + ¢., we see
j=1 =1

that for j and k=m, d(x;, ) < d, + .. Thus {z;| is a CAUCHY sequence

and has a limit x. Since ®,€ 4. for j =m, and since 4. is closed, xed,.

It follows that xe N 4, = 4,

mzl
It remains to show that 4., approaches A, in the HAUSDORFF metric.
Suppose not. Then for some r > 0, we can find a sabsequence A., such that
B =4, ﬂ N{dx) is nonempty, where N{A.) denotes the eomplenwnt of
Nid). Since B; is a decreasing sequence of nonempty closed sets with
lim y(B) =0, what we have already proved shows M B: is nonempty. But

i1
this is a contradiction, since n BiC 4. and N B, C N.(4.). Q.E.D.

i=l1
If we specialize still further and assume that X is a Bavacm space, we

obtain results which will be crucial in onr farther work. The next two pro-
positions are due to DArBo and can be found in his article [12], The proofs
are not difficuls.
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maps » considered in (3] and [36] (see also [38] und the remark at the end
of this paper).

The reader who is only intersted in degree theory can avoid considerable
effort. For degree theory the results of Section B are unnecessary; one only
needs DUGUNDII'S theorem [15]. The technical difficulties encountered in
Section F' in the general cnse completely vanish for this special case. Finally,
for degree theory one can assume throughont that the metric ANR's consi-
dered are closed, convex subsets of Banach spaces.

Asido from the material on condensing maps, the theorems given here
were proved in the author's Ph.D. dissertation (University of Chicago, 1969)
and were summarized in [28].

A. - The measare of nonecompactness and A-set-contractions.

Let us begin with some basic notions. If (4, ¢) is a bounded metric
space, we define y(4), the measure of noncompactness of 4, to be inf{d> 0| A4
can be covered by a finite number of scts of diameter less than or equal
to df. The idea of measure of noncompactness is due to Kurarowskr [20].
I (X, ¢) is a metric space and 4 is a bounded subset of 4, 4 inherits a metrie
from X, and we can speak of ¢(4). Alternatively in this case, we can define
7(d)=inf|d > 0|4 can be covered by a finite number of sets in X (sets
not necessarily contained in 4) of diameter less than or equal to d| and it
is clear that y(4) = y(4). In practice, when we speak of measure of noncom-
pactness, it will almost invariably be the measure of noncompactness of a
bounded subset 4 of a metric space (X, g).

In this generality little can be said about the measure of noncompactness.
Our first proposition lists the essentials. We leave the proof to the reader.

ProposiTioN 1. - Let (X, g) be a metric space and 4 and B bounded
subsets of X, We write N(d)=|[x€X :plx, 4) <7r}|. Then we have a) if
ACB, yv(4) <¥(B) b) y(NA4)) << v(4)+ 2r c) il cl(4) denotes the closure of
4, y(el(4) = v(4) ) y(4 U B) = max ( y(4), ¥(B)].

If we assume that (X, g) is a complete metric space, we can say
considerably more. Recall that in a complete metrie space (X, ¢) a subset 4
has compact closure iff it is totally bounded, and clearly 4 is totally bounded
iff v(4) =0. We also know that a decreasing sequence of compact, nonempty
spaces has nonempty intersection. The following theorem, due o KURATOWSKI
[20], generalizes the latter result. We include a proof for completeness.

PropositioN 2. (Kunarowski) - Let (X, z) be a complele metric space and
let 4,2 4:D .. be a decreasing sequence of nonempty, closed subsets of X,
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In this paper we shall give a different generalization of the LERAY-SCHAUDER
degree. We shall consider maps of the form I--/, where f is a «k-sel-
contraction », k<1, and deline a degree theory for them. The simplest
nontrivial example of a K-set-contraction, k<1, is a map ol the form
U+ O, U7 a strict contraction defined on some subset of a Banach space,
and C a compact map. Actually, we shall consider maps f: G — X, where f
is a k-set-contraction, ¥ < 1, and G is an open subset of a «mnice» metric
ANR X; and we shall define a fixed point index iy(f, G). We shall prove
that ounr definition agrees with the classical one when X is a compact
polyhedron, and we shall show that all the properties of the usual fixed
point index — the additivity, homotopy, aud normalization properties —
extend in the appropriate way to our context. Our fixed point index will
give as a special case a degree theory for maps of the form I —f.

Because of problems of length we cannot give applications of our fixed
point index in this paper though some of the standard applications will be clear
to anyone familiar with LERAY-ScAAUDER degree. In [32] we apply ouv
fixed point index in its full generality in order to obtain asympotic fixed
point theorens for k-set-contractions, These results generalize theorems of
Browper in [8). In [33] we specialize to the case of degree theory. We
prove an invariance of domain theorem for our maps, we investigate questions
of A-properness and obtain results along the lines of BrownER and PETRY-
SHYN in [11], and we prove that oonr degree theory agrees with that defined
by Browper and NussBaum [10] where they coincide. Some of these results
have been summarized in [28]. In a future paper we shall give applications
to an existence theorem for a hyperbolic partial differential equation and
local existence theorems for equations of evolution and functional differential
equations, Preliminary results along this line are given in [30] and [31].

Some remarks about the organization of this paper: Section 4 gives
delinitions, notations, and basic theorems from the literature, though some
of the resulis are new. In Section B we study geometrical properties of
finite unions ol convex sets in a vector space; our resunlts can be viewed as
a generalization of DUGUNDJLU's theorem [15] that a closed, convex subset C
of a Banach space X is a retract of X. Section (' presents extensions of
the classical fixed point index which are necessary for the later work. In
Section D the fixed point index is defined for a class of maps which includes
k-set-contractions, k < 1. This class, thongh somewhat clumsy to work with,
is actually quite useful in applications and provides greater flexibility than
the k-set-contractions. See [30], for instance. In Section E we apply ounr
previous work to local sirict-set-contractions and spend considerable space
in relating LERAY'S gencralized LewscEETZ number (23] to our fixed point
index. In the final section we use a sort of limit argument to define a fixed
point index for certain l-set-contractions and especially for the ¢ condensing
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Summary, - We define bolow a flwed point index for local condénsing maps f defined on open
subset of «nices meiric ANR a. We prove that all the properties of classical fixed point
index for continuows maps defined in compact polyhedra have appropriate generaliza-
tions. If our map is compact (w special case of a condensing map) and defined on an
open subset of a Banach space, we prove that owr flxed point index agrees with Leray-
Schawder deyree.

Introduetion.

Let X be a Banach space, @ an open subset of X, and f: G > X a
compact map, For some a € X suppose that (I —f)~'(a) is a compact subset
of @, Under these assumptions LERAY and ScHAUDER [24], using results of
BrouwEeR (4], delined the topological degree of I — f on @ over the point a,
deg (I —f, G, a). The LERAY-SOHAUDER degree has proved to be one of the
most powerful and subtle tools for the study of fixed points of f or of the
properties of the map I — f, f compact. It has had significant applications
to partial differential equations, ordinary differential equations, and integral
equations.

It was realized later that the so-called topological fixed point index
(discussed in varying degrees of generality in (1], [6], [14], [22), and [37]) could
be used to obtain the LERAY-SCOHAUDER degree. If C is a «nice» compact,
Havsporry space (for instance, a compact polyhedron or a finite union of
compact convex sets in a Banach space), O is an open subset of O, and
9:0—-C is a continuous map such that [®€0:glx)=o| is compact or
empty, then the topological fixed point index of g, icg, 0), is defined. This
integer reduces to the Lefschetz number when C=0. If f and G are as
above and (¢ is bounded, then if we set C = convex closure of |f(®) 4 a:
2€6G)],0=GN0, and glx) = flx) + a for @ €0, deg (I —f, G, a) = icg, 0).

In recent years it has become clear that it is desirable to extend degree
theory to much more general maps than compact displacements of the
identity. Extensions along this line have been given by BRowbDER and
NussBAuM in [10]; an exposition of this work is given by Browbper in [9]

(*) Entrata in Redazione il 12 oftobre 1970.




ANNALI DI MATEMATICA
PURA ED APPLICATA

Organo della Fondazione « Annali di matematica pura ed applicata: D, P.R., 9 gennaio 1970, n. 44.

Comitato di Direzione

2. BoMPIANI (Roma) - B, Finvzi (Milano) - D. Grarri (Bologna) - E. MArTINELLI (Roma)
C. MiranDa (Napoli) - G. SansoNe (Firenze) - G. Scorza Dracont (Bologna)
B. Secre (Roma) - G. Zarra (Firenze)

Direttore
GIOVANNI SANSONE

Segretario
RoseErTO CONTI

Questo giornale, il pilt antico periodico scientifico d'ltalia, pubblica soltanto memorie origi-
nali, opera di collaboratori italiani o stranieri: esse vengono stampate in lingua italiana,
inglese, francese o tedesca.

La pubblicazione & giunta attualmente alla quarta serie:
I SERIE - pubblicata a Roma dal 1850 al 1866, constava di 15 volumi, complctamente
esauritl,

I1 SeriE - pubblicata a Milano dal 1867 al 1897, consta di 26 volumi tutti esauriti. Della
I e II Serie venne pubblicato nel 1904 1'Indice Generale. Sono disponibili solo alcuni
fascicoli sciolti,

111 SeriE - pubblicata a Milano dal 1898 al 1922 consta di 31 volumi tutti esauriti, due
dei quali (XX e XXI) dedicati alla memoria del matematico Lagrange, in occasione del
centenario della sua morte, nel 1913. Sono disponibili alcuni fascicoli sciolti.

IV SERIE - si pubblica a Bologna dal novembre 1923, Sono in vendita i Volumi dall'l
al'LXXXVIII,

Per l'acquisto del volumi e fascicoli disponibili rivolgersi alla Casa Editrice Nicola Zani-
chelli in Bologna (40126), Via Irnerio, 34.

Per la Redaz. e per la parte scientifica, dirigersi ad uno dei componenti il Comit. di Direz.

Per ogni fatto pertinente all’Amministrazione dirigere csclusivamente
' a

NICOLA ZANICHELLI EDITORE IN BOLOGNA
Prezzo di ogni volume: L. 8,000 in Italia - L. 9.000 all'Estero

NORME PER GLI AUTORI

I manoscritti vanno diretti ad uno dei componenti il Comitato di Direzione. Si desi-

dera che i manoscritti siano perfettamente leggibili e possibilmente scritti a macchina;

per i lavori non redatti in lingua italiana, la scrittura a macchina & indispensabile.

Si rivolge viva preghiera agli Autori di usare la massima discrezione nelle modificazioni,

ora costosissime, sulle bozze di stampa: le correzioni non puramente tipografiche essen-
doci addebitate dalla Stamperia.

Per ogni lavoro sono date complessivamente N. 100 copie estratti, gratuite. Volendone un
numero maggiore o con copertina speciale, rivolgersi direttamente alla Societd Tipografica
Editoriale Azzoguidi Via Emilia Ponente, 421-B, 40132 Bologna (ltalia).




ANNALI DI MATEMATICA

PURA ED APPLICATA
f.

/

Serie IV - Tomo LXXXIX - 1871
(CLXI della Hnaccolta)
Botto gli muspici del Consiglio Namionale delle Ricerche

BOLOGNA
NICOLA ZANICHELLI EDITORE
1971

A



